Skip to main content
Log in

Isolation and chemical characterization of lipopolysaccharides from four Mycoplana species (M. bullata, M. segnis, M. ramosa and M. dimorpha)

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharides (LPS), isolated from four Mycoplana species, i.e. the type strains of M. bullata, M. segnis, M. ramosa and M. dimorpha, were characterized onto their chemical composition and their respective lipid A-types. Those of M. bullata and M. segnis showed on DOC-PAGE an R-type character and had lipid A's of the Lipid ADAG-type which exclusively contained 2,3-diamino-2,3-dideoxy-d-glucose as lipid A sugar. LPS's of M. ramosa and M. dimorpha showed, although only weakly expressed, ladder-like patterns on DOC-PAGE indicating some S-type LPS's and lipid A of the d-glucosamine type (Lipid AGlcN). M. bullata LPS contained mannose and glucose in major amounts and additionally l-glycero-d-mannoheptose, whereas M. segnis LPS was composed of rhamnose, mannose and glucose together with both, d-glycero-d-manno- and l-glycero-d-manno-heptoses in a molar ratio of 1:2. All LPS's contained 2-keto-3-deoxy-octonic acid (Kdo), phosphate and an unidentified acidic component “X”. In addition to “X”, M. segnis LPS contained glucuronic and galacturonic acids, whereas M. ramosa LPS contained only galacturonic acid. Acetic acid hydrolysis of the LPS resulted in splitting off lipid A moieties, very rich in 3-hydroxy fatty acids, in particular in 3-OH-12:0 (in Lipid ADAG), or in 3-OH-14:0 (in Lipid AGlcN). Analysis of the 3-acyloxyacyl residues revealed major amounts of amide-linked 3-OH(3-OH-13:0)12:0 in lipid A of M. bullata and 3-OH(12:0)12:0 in lipid A of M. segnis. The rare 4-oxo-myristic acid (4-oxo-14:0) was observed only in M. bullata LPS, where it is ester-linked. Amide linked diesters could not be traced in M. ramosa and M. dimorpha. All four lipid A's lacked erster-bound acyloxyacyl residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

2,3-diamino-2,3-dideoxy-d-glucose

Kdo:

2-keto-3-deoxy-octonate

LPS:

lipopolysaccharide

PITC:

phenyl isothiocyanate

NANA:

N-acetyl neuraminic acid

References

  • ArataS, HirayamaT, KasaiN, ItohT, OhsawaA (1989) Isolation of 9-hydroxy-δ-tetradecalactone from lipid A of Pseudomonas diminuta and Pseudomonas vesicularis. FEMS Microbiol Lett 60: 219–222

    Google Scholar 

  • ArataS, ShizaT, MizutaniT, MashimoJ, KasaiN, SzaboL (1992) Structure of a new type of lipid A from Pseudomonas vesicularis (abstract 85). 2nd Conference of the International Endotoxin Society, August 1992, Vienna StützP (ed) IES, Vienna, p 63

    Google Scholar 

  • BhatUR, MayerH, YokotaA, HollingsworthRI, CarlsonRW (1991) Occurrence of lipid A variants with 27-hydroxy-octacosanoic acid in lipopolysaccharides from Rhizobiaceae group. J Bacteriol 173: 2155–2159

    Google Scholar 

  • BradeH, GalanosC, LüderitzO (1983) Differential determination of the 3-deoxy-d-mannoctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem 131: 195–200

    Google Scholar 

  • GalanosC, LüderitzO, WestphalO (1979) Preparations and properties of a standardized lipopolysaccharide from Salmonella abortus equi (Novo-Pyrexal). Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt 1 Orig A 243: 226–244

    Google Scholar 

  • HolstO, BorowiakD, WeckesserJ, MayerH (1983) Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 137: 325–332

    Google Scholar 

  • KasaiN, ArataS, MashimoJ, AkiyamaY, TanakaC, EgawaK, TanakaS (1987) Pseudomonas diminuta LPS with a new endotoxic lipid A structure. Biochem Biophys Res Commun 142: 972–978

    Google Scholar 

  • KeletiG, LedererWH (1974) Handbook of micro methods for the biological science. Van Nostrand Reinhold, New York, p 155

    Google Scholar 

  • KomuroT, GalanosC (1988) Analysis of Salmonella lipopolysaccharide by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450: 381–387

    Google Scholar 

  • LechevalierHA, LechevalierMP (1986) Genus Oerskovia Prauser In: SneathPHA, MairNS, SharpeME, HoltJG (eds) Bergey's manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1489–1491

    Google Scholar 

  • LowryOH, RobertsNR, LeinerKY, WuML, FarrAL (1954) The quantitative histochemistry of brain. I. Chemical Methods. J Biol Chem 207: 1–17

    Google Scholar 

  • LüderitzO, FreudenbergMA, GalanosC, LehmannV, RietschelET, ShawDH (1982) Lipopolysaccharides of gram-negative bacteria. Curr Top Membr Transp 17: 79–151

    Google Scholar 

  • MayerH, TharanathanRN, WeckesserJ (1985) Analysis of lipopolysaccharides of gram-negative bacteria. In: GottschalkG (ed) Methods in microbiology vol. 18. Academic Press, New York, pp 157–207

    Google Scholar 

  • MayerH, Campos-PortuguezSA, BuschM, Urbanik-SypniewskaT, Ramadas BhatU (1990) Lipid A variants — or how constant are the constant regions in lipopolysaccharides? In: NowotnyA, SpitzerJJ, ZieglerEJ (eds) Cellular and molecular aspects of endotoxin reactions. Elsevier, Amsterdam, pp 111–120

    Google Scholar 

  • MoranAP, ZähringerU, SeydelU, ScholzD, StützP, RietschelET (1991) Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccaride. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-d-glucose and 2,3-diamino-2,3-dideoxy-d-glucose. Eur J Biochem 198: 459–469

    Google Scholar 

  • MorrisonDC, RyanJL (eds) (1992) Bacterial endotoxic lipopolysaccharides. Molecular biochemistry and cellular biology, vol I. Immunpharmacology and pathophysiology, vol II. CRC Press, Boca Raton, Fla.

    Google Scholar 

  • RietschelET, BradeH (1992) Bacterial endotoxins. Sci Am 267: 26–33

    Google Scholar 

  • RussaR, Urbanik-SypniewskaT, ChomaA, MayerH (1991) Identification of 3-deoxy-lyxo-2-heptulosaric acid in the core region of lipopolysaccharides from Rhizobiaceae. FEMS Microbiol Lett 84: 337–344

    Google Scholar 

  • RyhageR, StenhagenE (1960) Mass spectrometric studies VI. Methylesters of normal chain oxo-, hydroxy-, methoxy, and epoxy-acids. Ark Kemi 15: 545–560

    Google Scholar 

  • TharanathanRN, WeckesserJ, MayerH (1978), Structural studies on the d-arabinose-containing lipid A from Rhodospirillum tenue 2761. Eur J Biochem 84: 385–394

    Google Scholar 

  • TrevelyanWE, ProcterDP, HarrisonJS (1950) Detection of sugars on paper chromatograms. Nature 166: 444–445

    Google Scholar 

  • TsaiCM, FraschCE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119: 115–119

    Google Scholar 

  • UrakamiT, OyanagiH, ArakiH, SuzukiK, KomagataK (1990) Recharacterization and amended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int J Syst Bacteriol 40: 434–442

    Google Scholar 

  • WeckesserJ, MayerH (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 54: 143–154

    Google Scholar 

  • WestphalO, JannK (1965) Bacterial lipopolysaccharides. Extraction with phenol-water and further application of the procedure. Methods Carbohydr Chem 5: 83–91

    Google Scholar 

  • WilkinsonSG (1988) Gram-negative bacteria. In: RatledgeC, WilkinsonSG (eds) Microbial lipids, vol 1. Academic Press, London, pp 299–488

    Google Scholar 

  • WilkinsonSG, TaylorDP (1978) Occurrence of 2,3-diamino-2,3-dideoxy-d-glucose in lipid A from lipopolysaccharide of Pseudomonas diminuta. J Gen Microbiol 109: 367–370

    Google Scholar 

  • WollenweberHW, RietschelET (1990) Analysis of lipopolysaccharide (lipid A) fatty acids. J Microbiol Methods 11: 195–211

    Google Scholar 

  • WollenweberHW, BroadyKW, LüderitzO, RietschelET (1982) The chemical structure of lipid A: demonstration of amide-linked 3-acyloxyacyl residues in Salmonella minnesota Re lipopolysaccharide. Eur J Biochem 124: 191–198

    Google Scholar 

  • Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequences. FEMS Microbiol (in press)

  • YokotaA, SakaneT (1991) Taxonomic significance of fatty acid compositions in whole cells and lipopolysaccharides in Rhizobiaceae TFO Res Commun 15: 57–75

    Google Scholar 

  • ZahrM, FobelB, MayerH, ImhoffJF, CamposVP, WeckesserJ (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis and Ectothiorhodospira halophila. Arch Microbiol 157: 499–504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tharanathan, R.N., Yokota, A., Rau, H. et al. Isolation and chemical characterization of lipopolysaccharides from four Mycoplana species (M. bullata, M. segnis, M. ramosa and M. dimorpha). Arch. Microbiol. 159, 445–452 (1993). https://doi.org/10.1007/BF00288592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288592

Key words

Navigation