Skip to main content
Log in

Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Crustal xenoliths in the 1961 andesite flow of Calbuco Volcano, in the southern Southern Volcanic Zone (SSVZ) of the Andes, consist predominantly of pyroxene granulites and hornblende gabbronorites. The granulites contain plagioclase+pyroxene+magnetite±amphibole, and have pronounced granoblastic textures. Small amounts of relict amphibole surrounded by pyroxene-plagioclase-magnetite-glass symplectites are found in some specimens. These and similar textures in the gabbronorites are interpreted as evidence of dehydration melting. Mineral and bulk rock geochemical data indicate that the granulites are derived from an incompatible trace element depleted basaltic protolith that underwent two stages of metamorphism: a moderate pressure, high temperature stage accompanied by melting and melt extraction from some samples, followed by thermal metamorphism after entrainment in the Calbuco andesite lavas. High ɛNd T values (+4.0 to +8.6), Nd-isotope model ages of 1.7–2.0 Ga, and trace element characteristics like chondrite normalized La/Yb< and La/Nb≤1 indicate that the protoliths were oceanic basalts. Similar oceanic metabasalts of greenschist to amphibolite facies are found in the Paleozoic metamorphic belt that underlies the Chilean coastal ranges. Mineral and bulk rock compositions of the gabbronorite xenoliths indicate that they are cognate, crystallizing from the basaltic andesite magma at Calbuco. Crystallization pressures for the gabbros based on total Al contents in amphibole are 6–8 kbar. These pressures point to middle to lower crustal storage of the Calbuco magma. Neither granulite nor gabbro xenoliths have the appropriate geochemical characteristics to be contaminants of Calbuco andesites, although an ancient sedimentary contaminant is indicated by the lava compositions. The presence of oceanic metabasaltic xenoliths, together with the sedimentary isotopic imprint, suggests that the lower crust beneath the volcano is analogous to the coastal metamorphic belt, which is an accretionary complex of intercalated basalts and sediments that formed along the Paleozoic Gondwanan margin. If this is the case, the geochemical composition of the lower and middle crust beneath the SSVZ is significantly different from that of most recent SSVZ volcanic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beard JS (1990) Partial melting of metabasites in the contact aureoles of gabbroic plutons in the Smartville Complex, Sierra Nevada, California. Geol Soc Am Mem 174:303–313

    Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J Petrol 32:365–401

    Google Scholar 

  • Conrad WK, Nicholls IA, Wall VJ (1993) Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803

    Google Scholar 

  • Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1988) The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile; multicomponent sources and open system evolution. Contrib Mineral Petrol 100:429–445

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • Ferguson KM, Dungan MA, Davidson JP, Colucci MT (1992) The Tatara-San Pedro volcano, 36°S, Chile: a chemically variable, dominantly mafic magmatic system. J Petrol 33:1–43

    Google Scholar 

  • Forsythe R (1982) The late Paleozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. J Geol Soc London 139:671–682

    Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr and REE between phenocrysts and groundmass. Proc Lunar Planet Sci Conf 14 Part 2, J Geophys Res 89 Suppl:B662–672

    Google Scholar 

  • Gerlach DC, Frey FA, Moreno Roa H, López-Escobar L (1988) Recent volcanics from the Puyehue-Cordon Caulle region, Southern Andes, Chile (40°S). I. Petrogenesis of evolved lavas. J Petrol 29:333–382

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Godoy E (1979) Metabasitas del basamento metamorfico Chileno, nuevos datos geoquimicos. Acta II Congr Geol Chileno: E133–E148

  • Godoy E, Davidson J, Hervé F, Mpodozis C, Kawashita K (1984) Deformación sobreimpuesta y metamorfismo progresivo en un prisma de acreción Paleozoico: Archipielago de los Chonos, Aysen, Chile. Actas Noveno Congr Argentino IV:211–232

    Google Scholar 

  • Hammarstrom JM, Zen E-an (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Helz R (1987) Evidence for melt extraction from the sills and dikes associated with the Stillwater Complex, Montana. Geol Soc Am Abstr Prog 19:699

    Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in southern Chile. Episodes 11:183–188

    Google Scholar 

  • Hervé F, Moreno H, Parada MA (1974) Granitoids of the Andean range of Valdivia province. Chile. Pac Geol 8:39–45

    Google Scholar 

  • Hervé F, Thiele R, Parada MA (1976) El basamento meramorfico del archiepelago de las Guaitecas, Aysen, Chile. Actas I Congr Geol Chile 1:B73–85

    Google Scholar 

  • Hervé F, Pankhurst RJ, Brook M, Alfaro G, Frutos J, Miller H, Schira W, Amstutz GC (1990) Rb-Sr and Sm-Nd data from some massive sulfide occurrences in the metamorphic basement of South-Central Chile. In: Fontbote L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Berlin Heidelberg New York, pp 221–228

    Google Scholar 

  • Hervé M (1977) Geología del área al este de Liquiñe, provincia de Valdivia, Xa Región. Thesis for Geologist degree, Universidad de Chile, Santiago

  • Hervé M, Munizaga F (1978) Antecedentes geocronologicos del area al este de Liquiñe, Cordillera de los Andes, latitud 39°45′ S. Resumenes II Congreso Geologico Chileno, pp 45–46

  • Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes: trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91:5963–5983

    Google Scholar 

  • Hickey-Vargas R, Moreno-Roa H, López-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica region (39.5° S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Mineral Petrol 103:361–386

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Klohn E (1963) The February 1961 eruption of Calbuco volcano. Bull Seismol Soc Am 53:1435–1436

    Google Scholar 

  • Kretz R (1982) Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46:411–421

    Google Scholar 

  • Lahsen A, Moreno H, Varela J, Munizaga F, López-Escobar L (1985) Geología y riesgo volcánico del volcán Calbuco y centros eruptivos menores. Proyecto Canutillarz, ENDESA-Univ. Chile, Informe Técnico

  • Langmuir CH, Zhang Y, Taylor B, Plank T, Rubenstone J (1994) Petrogenesis of Torishima and adjacent volcanos of the Izu-Bonin arc: one end member of the global spectrum of arc basalt compositions. Contrib Mineral Petrol (in press)

  • Lindsley DH (1983) Pyroxene thermonetry. Am Mineral 68:477–493

    Google Scholar 

  • López-Escobar L, Moreno H, Tagiri M, Notsu K, Onuma N (1985) Geochemistry of lavas from San Jose volcano, southern Andes (33°45′ S). Geochem J 19:209–222

    Google Scholar 

  • López-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°–41°30′ S): comparative study. Rev Geol Chile 19:211–226

    Google Scholar 

  • López-Escobar L, Kilian R, Kempton P, Tagiri M (1993) Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41°30′ and 46°00′ S. Chile. Rev Geol Chile 20:33–55

    Google Scholar 

  • López-Escobar L, Parada MA, Hickey-Vargas R, Frey FA, Kempton PD, Moreno H (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41°–42° S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contrib Mineral Petrol 119:345–361

    Google Scholar 

  • McMillan N, Harmon R, Moorbath S, López-Escobar L, Strong DF (1989) Crustal sources involved in continental arc magmatism: a case study of volcan Mocho-Choshuenco, southern Chile. Geology 17:1152–1156

    Google Scholar 

  • Munizaga F, Hervé F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of south-central Chile (39°–42° S): preliminary results. J S Am Earth Sci 1:309–316

    Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkali and alkaline earth element between phenocrysts and acidic igneous magma. Geochim Cosmochim Acta 35:953–968

    Google Scholar 

  • Noyes HJ, Frey FA, Wones DR (1983) A tale of two plutons: geochemical eviduence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. J Geol 91:487–509

    Google Scholar 

  • Oyarzun R (1986) El complejo de Nahuelbuta-Queule: un posible caso de acrecion Paleozoica en Chile central sur. Estud Geol (Madrid) 42:11–22

    Google Scholar 

  • Pankhurst RJ, Hervé F, Rojas L, Cembrano J (1992) Magmatism and tectonics in continental Chiloé, Chile. Tectonophysics 205:283–294

    Google Scholar 

  • Parada MA (1990) Composición de fenocristales en lavas del volcán Calbuco y sus implicancias en la historia temprana de cristalización. Acta XI Congr Geol Argentino 1:101–104

    Google Scholar 

  • Parada MA, Godoy E, Hervé F, Thiele R (1987) Miocene calc-alkaline plutonism in the Chilean Southern Andes (41°00′–41°45′ S). International Symposium on Granites and Associated Mineralization (ISGAM), Brasil Geociencias 17:450–455

    Google Scholar 

  • Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granites. Contrib Mineral Petrol 107:202–218

    Google Scholar 

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Google Scholar 

  • Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112:101–118

    Google Scholar 

  • Rushmer T (1990) Partial melting of two amphibolites: contrasting experimental results under fluid absent conditions. Contrib Mineral Petrol 107:41–59

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1202

    Google Scholar 

  • Stern CR, Futa K, Muehlenbachs K, Dobbs FM, Munoz J, Godoy E, Charrier R (1984) Sr, Nd, Pb and O isotopic composition of Late Cenozoic volcanics, northernmost SVZ (33°–34° S). In: Harmon RS, Barreiro BA (eds) Andean magmatism: chemical and isotopic constraints. Shiva, Nantwich, England, pp 96–105

    Google Scholar 

  • Thiele R, Godoy E, Hervé F, Parada MA, Varela J (1985) Estudio geologico-estructural regional y tectonico del area Petrohue-Canutillar. Proyecto Petrohue-Canutillar (unpublished report-University of Chile)

  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991) Recent lavas from the Andean volcanic front (33° S to 42° S): interpretations of along-arc compositional variations. Geol Soc Am Spec Pap 265:57–78

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Wood DA (1979) A variably veined suboceanic upper mantle — genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology 7:499–503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickey-Vargas, R., Abdollahi, M.J., Parada, M.A. et al. Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction. Contr. Mineral. and Petrol. 119, 331–344 (1995). https://doi.org/10.1007/BF00286933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286933

Keywords

Navigation