Skip to main content
Log in

Modelling bathymetry by inverting satellite altimetry data: A review

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

With the advent of satellite altimetry it has become possible to determine the gravity field of the oceans on a global scale. This set of data can be used to predict the bathymetry of deep-seafloor features such as seamounts and ridges. During the last two decades, several algorithms which can be used to develop bathymetric predictions from satellite altimeter data have been published. The characteristics and quality of these algorithms are reviewed in this study. Based on this analysis, we suggest some guidelines for processing data towards the production of maps showing predicted bathymetry for economical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudry, N., Diament, M. and Albouy, Y., 1987, Precise Location of Unsurveyed Seamounts in the Austral Archipelago Area Using SEASAT Data, Geophys. J. Roy. Astr. Soc. 89, 869–888.

    Google Scholar 

  • Baudry, N. and Diament, M., 1987, Shipboard Confirmation of SEASAT Bathymetric Predictions in the South Central Pacific, in Keating, B. H., Fryer, P., Batiza, R. and Boehlert, G. W. (eds.), Seamounts, Islands and Atolls, Geophys. Monogr. Ser., 43, AGU, Washington, D.C., pp 115–122.

    Google Scholar 

  • Baudry, N., Stackelberg, U. V. and Recy, J., 1988, Volcanic Trends in the Austral Archipelago: Analysis and Interpretation of SEASAT and Seabeam Data, C. R. Acad. Sc. Paris, II, 306, 643–648.

    Google Scholar 

  • Baudry, N. and Calmant, S., 1991, 3D Modelling of Seamount Topography From Satellite Altimetry, Geophys. Res. Lett. 18, 1143–1146.

    Google Scholar 

  • Baudry, N., 1994a, Detection of Seamounts from Satellite, Invited Communication, XIII Fisheries Week of Açores, Horta, Açores, 15–19 March.

  • Baudry, N., 1994b, Off-Shore Seafloor Mapping From Satellite Altimetry: Results of Surveys Within Tuvalu and Papua New-Guinea EEZ's, in Seafloor Mapping in the West and Southwest Pacific, Abstract volume, ORSTOM Eds, Nouméa.

  • Baudry, N. and Calmant, S., 1996, Seafloor Mapping From High-Density Satellite Altimetry, Marine Geophys. Res. 18,135–146 (this issue).

    Google Scholar 

  • Boehlert, G. W. and Genin, A., 1987, A Review of the Effects of Seamounts on Biological Processes, in Keating, B. H., Fryer, P., Batiza, R. and Boehlert, G. W. (eds.), Seamounts, Islands and Atolls, Geophys. Monogr. Ser. 43, AGU, Washington, D.C., pp 319–334.

    Google Scholar 

  • Calmant, S., 1994, Seamount Topography by Least-Squares Inversion of Altimetric Geoid Heights and Shipborne Profiles of Bathymetry and/or Gravity Anomalies, Geophys. J. Int. 119, 428–452.

    Google Scholar 

  • Cazenave, A. and Dominh, K., 1984, Geoid Heights Over the Louisville Ridge (South Pacific), J. Geophys. Res. 89, 11171–11179.

    Google Scholar 

  • Craig, C. H. and Sandwell, D. T., 1988, Global Distribution of Seamounts from SEASAT Profiles, J. Geophys. Res. 93, 10408–10420.

    Google Scholar 

  • De, Carlo, E. H., 1991, Paleoceanographic Implications of Rare Element Variability Within a Fe−Mn Crust from the Central Pacific Ocean, Mar. Geology 98, 449–467.

    Google Scholar 

  • Dixon, T. H., Naraghi, M., McNutt, M. K. and Smith, S. M., 1983, Bathymetric Predictions From SEASAT Altimeter Data, J. Geophys. Res. 88, 1563–1571.

    Google Scholar 

  • Dixon, T. H. and Parke, M. E., 1983, Bathymetry Estimates in the Southern Oceans From SEASAT Altimetry, Nature 304, 406–411.

    Google Scholar 

  • Fonteneau, A., 1991, Seamounts and Tuna in the Tropical Eastern Pacific, Aquat. Living Resour. 4, 13–25.

    Google Scholar 

  • Freedman, A. P. and Parsons, B., 1986, Seasat-Derived Gravity Over the Musicians Seamounts, J. Geophys. Res. 91, 8325–8340.

    Google Scholar 

  • Groeger, W. J., 1981a, An Experimental Computer Algorithm for Seamount Model Parameter Estimation Based on SEASAT-A Satellite Radar Altimetry, Naval Surface Weapons Center, Tech. Rep. 81-200, Dahlgreen, Virginia.

  • Groeger, W. J., 1981b, Notes on Estimating the Seamount Slope From Vertical Deflection, Naval Surface Weapons Center, Tech. Rep. 81-202, Dahlgreen, Virginia.

  • Halbach, P., Manheim, F. T. and Otten, P., 1983, Co-rich ferromangenese Deposits in the Central Seamount Regions of the Central Pacific Basin-Results of the Midpac '81, Erzmetall 35, 447–453.

    Google Scholar 

  • Haxby, W. F., Karner, G. D., LaBrecque, J. L. and Weissel, J. K., 1983, Digital Images of Combined Oceanic and Continental Data Sets and Their Use in Tectonic Studies, EOS Trans. AGU 64, 995–1004.

    Google Scholar 

  • Haxby, W. F., 1985, Gravity Field of the World's Oceans, US Navy Naval Office of Research (chart, scale 1:51 400 000).

  • Hill, P. J. and Baudry, N., 1992, Marine Geophysical Verification of New SW Pacific Seamounts Revealed by Satellite Altimetry, in Geology and Offshore Mineral Resources of Central Pacific Basin, CPCEMR Earth Science Series 14, 69–76.

  • Jung, W. Y. and Vogt, P. R., 1992, Predicting Bathymetry From Geosat-ERM and Shipborne Profiles in the South Atlantic Ocean, Tectonophysics 210, 235–253.

    Google Scholar 

  • Keating, B. H., 1989, Morphology of Central Pacific Seamounts: Implications for Mn-Crust Mining, Offshore Technology Conference 6061, Houston, Texas, May 1–4.

  • Keating, B., Cherkis, N. Z., Fell, P. W., Handschmacher, D., Hey, R. N., Lazarewicz, A., Naar, D. F., Perry, R. K., Sandwell, D., Schwank, D. C., Vogt, P. R. and Zondek, B., 1984, Field Tests of SEASAT Bathymetric Detections, Marine Geophys. Res. 7, 69–71.

    Google Scholar 

  • Lambeck, K., 1981, Lithospheric Response to Volcanic Loading in the Southern Cook Islands, Earth Pl. Sc. Lett. 55, 482–496.

    Google Scholar 

  • Lambeck, K. and Coleman, R., 1982, A Search for Seamounts in the Southern Cook and austral Region, Geophys. Res. Lett. 9, 389–392.

    Google Scholar 

  • Lazarewicz, A. R. and Schwank, D. C., 1982, Detection of Uncharted Seamounts Using Satellite Altimetry, Geophys. Res. Lett. 9, 385–388.

    Google Scholar 

  • Lonsdale, P., 1988, Geography and History of the Louisville Hotspot Chain in the Southwest Pacific, J. Geophys. Res. 93, 3078–3104.

    Google Scholar 

  • Macario, A., Haxby, W. F., Goff, J. A., Ryan, W. B., Cande, S. T. and Raymond, C. A., 1994, Flow Line Variations in Abyssal Hill Morphology for the Pacific-Antarctic Ridge at 65° S, J. Geophys. Res. 99, 17921–17934.

    Google Scholar 

  • Marks, K. M. and Stock, J. S., 1994, Variations in Ridge Morphology and Depth-Age Relationships on the Pacific-Antarctic Ridge, J. Geophys. Res. 99, 531–541.

    Google Scholar 

  • Mammerickx, J., 1992, The Foundation Seamounts: Tectonic Setting of a Newly Discovered Seamount Chain in the South Pacific, Earth Planet. Sci. Letters 113, 293–306.

    Google Scholar 

  • Mayes, C. L., Lawver, L. A. and Sandwell, D. T., 1990, Tectonic History and New Isochron Chart of the South Pacific, J. Geophys. Res. 95, 8543–8567.

    Google Scholar 

  • McAdoo, D. C., 1990, Gravity Field of the Southeast Central Pacific from Geosat Exact Repeat Mission Data, J. Geophys. Res. 95 C3, 3041–3047.

    Google Scholar 

  • McConathy, D. and Kilgus, C. C., 1987, The Navy Geosat Mission: An Overview, in John Hopkins APL Technical Digest, April–June 1987, 8.2, 170–181.

  • Moritz, H., 1978, Least Square Collocation, Rev. of Geophys. and Space Phys. 16, 421–430.

    Google Scholar 

  • Okal, E. A. and Cazenave, A., 1985, A Model for the Plate Tectonics Evolution of the East Central Pacific Based on SEASAT Investigations, Earth Planet. Sci. Lett. 72, 99–117.

    Google Scholar 

  • Parker, R. L., 1972, The Rapid Calculation of Potential Anomalies, Geophys. J. R. astr. Soc. 31,447–455.

    Google Scholar 

  • Pichocki, C. and Hoffert, M., 1987, Characteristics of Co-rich Ferromanganese Nodules and Crusts Sampled in French Polynesia, Mar. Geology 77, 109–119.

    Google Scholar 

  • Ribe, N. M., 1982, On the Interpretation of Frequency Response Functions for Oceanic Gravity and Bathymetry, Geophys. J. R. astr. Soc. 70, 273–294.

    Google Scholar 

  • Roden, G. I., 1987, Effects of Seamounts and Seamount Chains on Ocean Circulation and Thermohaline Structure, in Keating, B. H., Fryer, P., Batiza, R. and Boehlert, G. W. (eds.), Seamounts, Islands and Atolls, Geophys. Monogr. Ser., 43, AGU, Washington, D.C., 335–354.

    Google Scholar 

  • Royer, J. Y., Patriat, P., Bergh, H. and Scotese, C. R., 1988, Evolution of the Southwest Indian Ridge from the Late Cretaceous (Anomaly 34) to the Middle Eocene (Anomaly 20), Tectonophysics 155, 235–260.

    Google Scholar 

  • Royer, J. Y. and Sandwell, D. T., 1989, Evolution of the Eastern Indian Ocean Since the Late Cretaceous: Constraints from Geosat Altimetry, J. Geophys. Res. 94, 13755–13782.

    Google Scholar 

  • Sailor, R. V., 1982, Determination of the Resolution Capability of the SEASAT Radar Altimeter, Observations of the Geoid Spectrum, and Detection of Seamounts, The Analytical Science Corporation, TR 3751, Reading Massachusetts.

  • Sailor, R. V. and Okal, E. A., 1983, Application of SEASAT Data in Seismotectonic Studies of the South Central Pacific, J. Geophys. Res. 88, 1572–1580.

    Google Scholar 

  • Sailor R. V. and Le Schack, A. R., 1987, Preliminary Determination of the Geosat Radar Altimeter Noise Spectrum, in John Hopkins APL Technical Digest, April–June 1987, 8.2, 182–183.

  • Sandwell, D. T., 1984a, A Detailed View of the South Pacific Geoid From Satellite Altimetry, J. Geophys. Res. 89, 1089–1104.

    Google Scholar 

  • Sandwell, D. T., 1984b, Along-Track Deflection of the Vertical From SEASAT: GEBCO Overlays, NOAA Techn. Memorandum NOS NGS-40, Rockville, Md.

  • Sandwell, D. T. and McAdoo, D. C., 1988, Marine Gravity of the Southern Ocean and Antarctic Margin From Geosat, J. Geophys. Res. 93, 10389–10396.

    Google Scholar 

  • Sandwell, D. T. and McAdoo, D. C., 1990, High-Accuracy, High-Resolution Gravity Profiles From 2 Years of the Geosat Exact Reeat Mision, J. Geophys. Res. 95, 3049–3060.

    Google Scholar 

  • Sasaki, T., 1986, Development of Present Status of Japanese Trawl Fisheries in the Vicinity of Seamounts, in Uchida, R., Hayasi, S. and Boehlert, G. (eds.), Environment and Resources of Seamounts in the North Pacific, NOAA Technical Report report NMFS 43, Seattle WA.

  • Seki, M. P. and Tagami, D. T., 1986, Review and Present Status of Handline and Bottom Longline Fisheries for Alfonsin, in Uchida, R., Hayasi, S. and Boehlert, G. (eds.), Environment and Resources of Seamounts in the North Pacific, NOAA Technical Report report NMFS 43, Seattle WA.

  • Shaw, P. R., 1987, Investigation of Relative Plate Motions in the South Atlantic Using SEASAT Altimeter Data, J. Geophys. Res. 92, 9363–9375.

    Google Scholar 

  • Smith, W. H. and Sandwell, D. T., 1994, Bathymetric Prediction From Dense Satellite Altimetry and Sparse Shipboard Bathymetry, J. Geophys. Res. 99, 21803–21824.

    Google Scholar 

  • Tisseau-Moignard, C., 1979, Modèles de Flexure de la Lithosphère sous L'effet d'une Charge Sédimentaire. Application au Bassin de Nouvelle-Calédonie (Sud-Ouest Pacifique), Thèse de 3ème cycle (in French), Univ. Orsay-Paris sud.

  • Uchida, R. N. and Tagami, D. T., 1984, Groundfish Fisheries and Research in the Vicinity of Seamounts in the North Pacific Ocean, Mar. Fish. Rev. 46, 1–17.

    Google Scholar 

  • Vogt, P. R., Zondek, B., Fell, P. W., Cherkis, N. Z. and Perry, P. K., 1984, Seasat Altimetry, the North Atlantic Geoid and Evaluation by Shipborne Subsatellite Profiles, J. Geophys. Res. 89, 9885–9903.

    Google Scholar 

  • Vogt, P. R. and Jung, W. Y., 1991, Satellite Radar Altimetry Aids Seafloor Mapping, EOS Trans., Am. Geophys. Union 72, 465, 468–469.

    Google Scholar 

  • Watts, A. B., 1978, An Analysis of Isostasy in the World's Oceans. 1-Hawaiian—Emperor Seamount Chain, J. Geophys. Res. 83, 5985–6004.

    Google Scholar 

  • Watts, A. B. and Ribe, N. M., 1984, On Geoid Heights and Flexure of the Lithosphere at Seamounts, J. Geophys. Res. 89, 11152–11170.

    Google Scholar 

  • Watts, A. B., Weissel, J. K., Duncan, R. A. and Larson, R. L., 1988, Origin of the Louisville Ridge and Its Relationship to the Eltanin Fracture Zone System, J. Geophys. Res. 93, 3051–3077.

    Google Scholar 

  • White, J. V., Sailor, R. V., Lazarewicz, A. R. and LeSchack, A. R., 1983, Detection of Seamounts Signature in the SEASAT Altimeter Data Using Matched Filters, J. Geophys. Res. 88, 1541–1551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmant, S., Baudry, N. Modelling bathymetry by inverting satellite altimetry data: A review. Marine Geophysical Researches 18, 123–134 (1996). https://doi.org/10.1007/BF00286073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286073

Key words

Navigation