Skip to main content
Log in

Prophase chromosome movements in living house cricket spermatocytes and their relationship to prometaphase, anaphase and granule movements

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome and granule movements in meiotic prophase and prometaphase have been studied by time-lapse cinemicrography in live spermatocytes of the house cricket, Acheta domesticus. Chromosome movements in prophase cells, up to one hour or more before breakdown of the nuclear envelope, are described. These movements are frequent but saltatory; are based mostly at chromosome ends but also at kinetochores; occur in very intimate association with the inside of the nuclear envelope; are directed towards and away from the extranuclear centres (centrioles); tend weakly to accumulate bivalents round the two centres and reach a velocity of 0.65 μm/sec. Saltatory movements in granules associated with extranuclear asters are remarkably similar in basic characteristics to the intranuclear chromosome movements. Surprisingly, the chromosome movements (and those of granules) are reversably blocked by colcemid (but not lumi-colcemid), and yet occur in the apparent absence of an intranuclear microtubule array. The movements cease at or shortly after breakdown of the nuclear envelope. However, kinetochore movements in very early prometaphase are similar in velocity and other respects to prophase movements; later prometaphase movements are clearly slower, and those of anaphase very much slower still. — The prophase movements suggest a two component model for motion: a non-microtubule, linear force producer together with microtubules with a skeletal, orientational role. Arguably, both these components are also necessary for chromosome movements in prometaphase and anaphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, M., Heaysman, J. E. M., Pegrum, M.: The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62, 389–398 (1970)

    Google Scholar 

  • Ambrose, E. J., Forrester, J. A.: Electrical phenomena associated with cell movements. In: Aspects of cell motility (P. L. Miller, ed.) 22nd. Symp. Soc. Exp. Biol., Oxford, 1967. Cambridge: Univ. Press 1968

    Google Scholar 

  • Aronson, J., Inoué, S.: Reversal by light of the action of N-methyl N-desacetyl colchicine on mitosis. J. Cell Biol. 45, 470–477 (1970)

    Google Scholar 

  • Aronson, J. F.: Demonstration of a colcemid sensitive attractive force acting between the nucleus and a centre. J. Cell Biol. 51, 579–583 (1971)

    Google Scholar 

  • Avivi, L., Feldman, M.: The mechanism of somatic association in common wheat, Triticum aestivum L. IV. Further evidence for modification of spindle tubulin through the somatic-association genes as measured by vinblastine binding. Genetics 73, 379–385 (1973)

    Google Scholar 

  • Bajer, A.: Cine-micrographic studies on mitosis in endosperm. V. Formation of the metaphase plate. Exp. Cell Res. 15, 370–383 (1958)

    Google Scholar 

  • Bajer, A.: Notes on ultrastructure and some properties of transport within the living mitotic spindle. J. Cell Biol. 33, 713–720 (1967)

    Google Scholar 

  • Bajer, A.: Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). I. General principle. Cytobios 8, 139–160 (1973)

    Google Scholar 

  • Bajer, A., Hansen-Melander, E., Melander, Y., Molè-Bajer, J.: Meiosis in Cepaea nemoralis studied by microcinematography. Chromosoma (Berl.) 12, 374–381 (1961)

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Cine-micrographic studies on mitosis in endosperm. II. Chromosome, cytoplasmic and Brownian movements. Chromosoma (Berl.) 7, 558–607 (1956)

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Ciné analysis of some aspects of mitosis in endosperm. In: Cinemicrography in cell biology, p. 357–409. New York: Academic Press 1963

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Formation of spindle fibres, kinetochore orientation, and behaviour of the nuclear envelope during mitosis in endosperm. Fine structural and in vitro studies. Chromosoma (Berl.) 27, 448–484 (1969)

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Architecture and function of the mitotic spindle. In: Advances in cell and molecular biology (E. J. PuPraw, ed.), vol. 1, p. 213–266. New York: Academic Press 1971

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Spindle dynamics and chromosome movements. Int. Rev. Cytol. 34, Suppl.3, 1–271 (1972)

    Google Scholar 

  • Bajer, A., Östergren, G.: Centromere-like behaviour of non-centromere bodies. I. Neocentric activity in chromosome arms at mitosis. Hereditas (Lund) 47, 563–598 (1961)

    Google Scholar 

  • Bardele, C. F.: Struktur, Biochemie und Funktion der Mikrotubuli. Cytobiologie 7, 442–488 (1973)

    Google Scholar 

  • Bauer, H., Dietz, R., Röbbelen, Ch.: Die Spermatocytenteilungen der Tipuliden. III. Das Bewegungsverhalten der Chromosomen in Translokationsheterozygoten von Tipula oleracea. Chromosoma (Berl.) 12, 116–189 (1961)

    Google Scholar 

  • Beams, H. W.: The effects of ultracentrifuging upon the meiotic chromosomes of the male grasshopper, Melanoplus differentialis. J. Morph. 83, 87–103 (1948)

    Google Scholar 

  • Beams, H. W., Mueller, S.: Effects of ultracentrifugation on the interphase nucleus of somatic cells with special reference to the nuclear envelope-chromatin relationship. Z. Zellforsch. 108, 297–308 (1970)

    Google Scholar 

  • Behnke, O., Forer, A.: Some aspects of microtubules in spermatocyte meiosis in crane fly (Nephrotoma suturalis Loew): intranuclear and intrachromosomal microtubules. C. R. Trav. Lab. Carlsberg 35, 437–455 (1966)

    Google Scholar 

  • Behnke, O., Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967)

    Google Scholar 

  • Bickle, D., Tilney, L. G., Porter, K. R.: Microtubules and pigment migration in the melanophores of Fundulus heteroclitus L. Protoplasma (Wien) 61, 322–345 (1966)

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967)

    Google Scholar 

  • Bradley, M. O.: Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci. 12, 327–343 (1973)

    Google Scholar 

  • Brinkley, B. R., Murphy, P., Richardson, L. C.: Procedure for embedding in situ selected cells cultured in vitro. J. Cell Biol. 35, 279–283 (1967)

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma (Berl.) 19, 28–43 (1966)

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. In: Advances in cell biology (D.M. Prescott, L. Goldstein and E. McConkey, eds.), vol. 1, p. 119–185. New York: Appleton Century-Crofts 1970

    Google Scholar 

  • Buckley, I. K., Porter, K. R.: Cytoplasmic filaments in living cultured cells. A light and electron microscopy study. Protoplasma (Wien) 64, 349–380 (1967)

    Google Scholar 

  • Comings, D. E.: The rationale for an ordered arrangement of chromatin in the interphase nucleus. Amer. J. hum. Genet. 20, 440–460 (1968)

    Google Scholar 

  • Comings, D. E.: The structure and function of chromatin. Advanc. hum. Genet. 3, 237–431 (1972)

    Google Scholar 

  • Deysson, G.: Antimitotic substances. Int. Rev. Cytol. 24, 99–148 (1968)

    Google Scholar 

  • Dover, G. A., Riley, R.: The effects of spindle inhibitors applied before meiosis on meiotic chromosome pairing. J. Cell Sci. 12, 143–161 (1973)

    Google Scholar 

  • Ellis, G.: Piezoelectric micromanipulators. Science 138, 84–91 (1962)

    Google Scholar 

  • Esponda, P., Giménez-Martín, G.: The attachment of the synaptonemal complex to the nuclear envelope. Chromosoma (Berl.) 38, 405–417 (1972)

    Google Scholar 

  • Feldherr, C. M.: Structure and function of the nuclear envelope. Advances in cell and molecular biology (E. J. DuPraw, ed.), vol. 2, p. 273–307. New York: Academic Press 1972

    Google Scholar 

  • Fell, H. B., Hughes, A. F.: Mitosis in the mouse: a study of living and fixed cells in tissue culture. Quart. J. micr. Sci. 90, 355–380 (1949)

    Google Scholar 

  • Forer, A.: Local reduction of spindle fibre birefringence in living Nephrotoma suturalis (Loew) spermatocytes induced by ultraviolet microbeam irradiation. J. Cell Biol. 25 (Mitosis Suppl.), 95–117 (1965)

    Google Scholar 

  • Forer, A.: Characterization of the mitotic traction system, and evidence that birefringent spindle fibres neither produce nor transmit force for chromosome movement. Chromosoma (Berl.) 19, 44–98 (1966)

    Google Scholar 

  • Forer, A.: Chromosome movements during cell division. In: Handbook of molecular cytology (A. Lima-De-Faria, ed.), p. 553–601. Amsterdam: North Holland Publ. Comp. 1969

    Google Scholar 

  • Forer, A., Behnke, O.: An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew). I. The spindle. Chromosoma (Berl.) 39, 145–173 (1972)

    Google Scholar 

  • Francis, D. W., Allen, R. D.: Induced birefringence as evidence of endoplasmic viscoelasticity in Chaos carolinensis. J. Mechanochem. Cell Motility 1, 1–6 (1971)

    Google Scholar 

  • Franke, W. W.: Relationship of nuclear membrane with filaments and microtubules. Protoplasma (Wien) 73, 263–292 (1971)

    Google Scholar 

  • Freed, J. J., Lebowitz, M. M.: The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol. 45, 334–354 (1970)

    Google Scholar 

  • Fuge, H.: Spindelbau, Microtubuliverteilung und Chromosomenstruktur während der I. meiotischen Teilung der Spermatocyten von Pales ferruginea. Eine elektronenmikroskopische Analyse. Z. Zellforsch. 120, 579–599 (1971)

    Google Scholar 

  • Gawadi, N.: Actin in the mitotic spindle. Nature (Lond.) 234, 410 (1971)

    Google Scholar 

  • Goldman, R. D.: The role of three cytoplasmic fibres in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J. Cell Biol. 51, 752–762 (1971)

    Google Scholar 

  • Goldman, R. D.: The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J. Cell Biol. 52, 246–254 (1972)

    Google Scholar 

  • Goldman, R. D., Knipe, D. M.: Functions of cytoplasmic fibres in non-muscle cell motility. Cold Spr. Harb. Symp. quant. Biol. 37, 523–534 (1972)

    Google Scholar 

  • Green, L.: Mechanism of movement of granules in melanocytes of Fundulus heteroclitus. Proc. nat. Acad. Sci. (Wash.) 59, 1179–1186 (1968)

    Google Scholar 

  • Haber, J. B., Peloquin, J. G., Halvorson, H. D. Borisy, G.G.: Colcemid inhibition of cell growth and the characterization of a Colcemid-binding activity in Saccharomyces cerevisiae. J. Cell Biol. 55, 355–367 (1972)

    Google Scholar 

  • Harris, A. K., Dunn, G.: Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp. Cell Res. 73, 519–523 (1972)

    Google Scholar 

  • Hejnowicz, Z.: Propagated disturbance of transverse potential gradient in intracellular fibrils as the source of motile forces for longitudinal transport in cells. Protoplasma (Wien) 71, 343–364 (1970)

    Google Scholar 

  • Hotta, Y., Shepard, J.: Biochemical aspects of colchicine action on meiotic cells. Molec. gen. Genet. 122, 243–260 (1973)

    Google Scholar 

  • Hinkley, R., Telser, R.: Heavy meromyosin-binding filaments in the mitotic apparatus of mammalian cells. Exp. Cell Res. 86, 161–164 (1974)

    Google Scholar 

  • Hughes-Schrader, S.: Polarization, kinetochore movements, and bivalent structure in the meiosis of male mantids. Biol. Bull. 85, 265–300 (1943)

    Google Scholar 

  • Jacques, J. A., Biesele, J. J.: A study of Michel's film on meiosis in Psophus stridulus. I. Exp. Cell Res. 6, 17–29 (1954)

    Google Scholar 

  • Jensen, C., Bajer, A.: Spindle dynamics and arrangement of microtubules. Chromosoma (Berl.) 44, 73–89 (1973)

    Google Scholar 

  • Jockusch, B. M., Brown, D. F., Rusch, H. P.: Synthesis and some properties of an actin-like nuclear protein in the slime mold Physarum polycephalum. J. Bact. 108, 705–714 (1971)

    Google Scholar 

  • Jockusch, B. M., Ryser, U., Behnke, O.: Myosin-like protein in Physarum nuclei. Exp. Cell Res. 76, 464–466 (1973)

    Google Scholar 

  • Kubai, D. F.: Unorthodox mitosis in Trichonympha agilis: Kinetochore differentiation and chromosome movement. J. Cell Sci. 13, 511–552 (1973)

    Google Scholar 

  • Kubai, D. F., Ris, H.: Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction. J. Cell Biol. 40, 508–528 (1969)

    Google Scholar 

  • La Fountain, J.R.: Microfilaments in spermatocytes of Nephrotoma saturalis. J. Cell Biol. 60, 784–789 (1974)

    Google Scholar 

  • Levine, L.: In vitro male meiosis in the domestic cricket (Achaeta domesticus) Cytologia (Tokyo) 31, 438–451 (1966)

    Google Scholar 

  • Levine, L., Shifrin, N.: Distribution of adenosine triphosphatase during anaphase in cricket primary spermatocytes. Nature (Lond.) 249, 256–258 (1974)

    Google Scholar 

  • Luykx, P.: Cellular mechanisms of chromosome distribution. Int. Rev. Cytol. Suppl. 2, 1–173 (1970)

    Google Scholar 

  • Margulis, L.: Colchicine-sensitive microtubules. Int. Rev. Cytol. 34, 333–361 (1973)

    Google Scholar 

  • Mazia, D.: Mitosis and the physiology of cell division. In: The cell (J. Brachet and A. E. Mirsky, eds.), vol. 3, p. 77–412. New York: Academic Press 1961

    Google Scholar 

  • McCuIly, E. K., Robinow, C. F.: Mitosis in heterobasidiomycetous yeasts. I. Leucosporidium scotti (Candida scotti). J. Cell Sci. 10, 857–881 (1972)

    Google Scholar 

  • Michel, K.: Hochschulfilm C443/1944 der Reichsanstalt für Film und Bild in Wissenschaft und Unterricht, Berlin 1944

  • Miki-Noumura, T.: Isolation of fine filaments from the mitotic apparatus of sea urchin eggs. Embryologia (Nagoya) 9, 98–103 (1965)

    Google Scholar 

  • Molè-Bajer, J.: Cine-micrographic analysis of C-mitosis in endosperm. Chromosoma (Berl.) 9, 322–358 (1958)

    Google Scholar 

  • Molè-Bajer, J.: Chromosome movements in chloral hydrate treated endosperm cells in vitro. Chromosoma (Berl.) 22, 465–480 (1967)

    Google Scholar 

  • Molè-Bajer, J.: Fine structural studies on apolar mitosis. Chromosoma (Berl.) 26, 427–448 (1969)

    Google Scholar 

  • Nicklas, R. B.: Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanoplus differentialis spermatocytes. Chromosoma (Berl.) 12, 97–115 (1961)

    Google Scholar 

  • Nicklas, R. B.: Chromosome velocity during mitosis as a function of chromosome size and position. J. Cell Biol. 25 (Mitosis Suppl.), 119–135 (1965)

    Google Scholar 

  • Nicklas, R. B.: Mitosis. Advanc. Cell Biol. 2, 225–294 (1971)

    Google Scholar 

  • Nicklas, R. B., Koch, C. A.: Chromosome micromanipulation IV. Polarized motions within the spindle and models for mitosis. Chromosoma (Berl.) 39, 1–26 (1972)

    Google Scholar 

  • Nicklas, R. B., Staehly, C. A.: Chromosome micromanipulation I. The mechanism of chromosome attachment to the spindle. Chromosoma (Berl.) 21, 1–16 (1967)

    Google Scholar 

  • Nillson, B.: Acheta domesticus (Orthoptera). Some cytological observations. Ann. agric. coll. Sweden, 34, 437–464 (1968)

    Google Scholar 

  • Oakley, B. R., Dodge, J. S.: Kinetochores associated with the nuclear envelope in the mitosis of a dinoflagellate. J. Cell Biol. 63, 322–325 (1974)

    Google Scholar 

  • Östergren, G., Molè-Bajer, J., Bajer, A.: An interpretation of transport phenomena at mitosis. Ann. N.Y. Acad. Sci. 90, 381–408 (1960)

    Google Scholar 

  • Oksala, T., Therman, E.: The polarized stages in the meiosis of liliaceous plants. Chromosoma (Berl.) 9, 505–513 (1958)

    Google Scholar 

  • Olmstead, J. B., Borisy, G. G.: Microtubules. Ann. Rev. Biochem. 42, 507–540 (1973)

    Google Scholar 

  • Pollard, T. D., Korn, E.D.: The “contractile” proteins of Acanthamoeba castellanii. Cold Spr. Harb. Symp. quant. Biol. 37, 573–583 (1972)

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their functions. CIBA Foundation Symp. Principles of biomolecular organizations (G.E.W. Wolstenholme and M. O'Connor, eds.), p. 308–345. London: J. & A. Churchill Ltd. 1966

    Google Scholar 

  • Rebhun, L. I.: Structural aspects of saltatory particle movement. J. gen. Physiol. 50 (No. 6, pt. 2, Suppl.) 223–239 (1967)

    Google Scholar 

  • Rebhuhn, L. I.: Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32, 93–137 (1972)

    Google Scholar 

  • Rhoades, M. M.: Meiosis. In: The cell (J. Brachet and A. E. Mirsky, eds.), vol. 3, p. 1–75. New York: Academic Press 1961

    Google Scholar 

  • Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus. Chromosoma (Berl.) 40, 43–82 (1973a)

    Google Scholar 

  • Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma (Berl.) 41, 195–220 (1973b)

    Google Scholar 

  • Ryser, U.: Die Ultrastruktur der Mitosekerne in den Plasmodium von Physarum polycephalum. Z. Zellforsch. 110, 108–130 (1970)

    Google Scholar 

  • Ryter, A.: Association of the nucleus and the membrane of bacteria: a morphological study. Bact. Rev. 32, 39–54 (1968)

    Google Scholar 

  • Schmitt, F. O.: Fibrous proteins and neuronal dynamics. In: Cellular dynamics of the neuron (S. H. Barondes, ed.). Symp. Int. Soc. Cell Biol. vol. 8, p. 95–111. New York: Academic Press 1969

    Google Scholar 

  • Schrader, F.: The spermatogenesis of the earwig Anisolabis maritima Bon. with reference to the mechanism of chromosomal movement. J. Morph. 68, 123–148 (1941)

    Google Scholar 

  • Schrader, F.: Mitosis. 2nd ed. New York: Columbia University Press (1953)

    Google Scholar 

  • Shepard, J., Boothroyd, E. R., Stern, H.: The effects of colchicine on synapsis and chiasma formation in microsporocytes of Lilium. Chromosoma (Berl.) 44, 423–437 (1974)

    Google Scholar 

  • Sotelo, J. R., Garciá, R. B., Wettstein, R.: Serial sectioning study of some meiotic stages in Scaptericus borrelli (Grylloidea). Chromosoma (Berl.) 43, 307–333 (1973)

    Google Scholar 

  • Stadler, J., Franke, W. W.: Colchicine-binding proteins in chromatin and membranes. Nature (Lond.) New Biol. 237, 237–238 (1972)

    Google Scholar 

  • Stadler, J., Franke, W. W.: Characterization of the colchicine binding of membrane fractions from rat and mouse liver. J. Cell Biol. 60, 297–303 (1974)

    Google Scholar 

  • Stubblefield, E., Wray, W.: Architecture of the Chinese hamster metaphase chromosome. Chromosoma (Berl.) 32, 262–294 (1971)

    Google Scholar 

  • Swanson, C. P.: Cytology and cytogenetics. London: Macmillan 1960

    Google Scholar 

  • Taylor, E. W.: Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes. In: Proc. 4th Int. Congr. on Rheology 1963, part 4. Symp. on biorheology, p. 175–191. New York: Interscience 1965

    Google Scholar 

  • Tilney, L. G.: Gibbins, J. R.: Microtubules and filaments in the filipodia of secondary mesenchyme cells of Arbacia punctulata and Echinarachnius parma. J. Cell Sci. 5, 195–203 (1969)

    Google Scholar 

  • Vanderlyn, L.: Somatic mitosis in the root tip of Allium cepa—a review and reorientation. Bot. Rev. 14, 270–318 (1948)

    Google Scholar 

  • Virkki, N.: Contraction stage and formation of the distance sex bivalent in Oedionychina (Coleoptera, Alticidae). Hereditas (Lund) 71, 259–288 (1972)

    Google Scholar 

  • Wilson, E. B.: The cell in development and heredity, 3rd ed. New York: Macmillan 1925

    Google Scholar 

  • Wilson, L.: Properties of colchicine binding protein from chick embryo brain. Interactions with Vinca alkaloids and podophyllotoxin. Biochemistry (Wash.) 9, 4999–5007 (1970)

    Google Scholar 

  • Wilson, L., Friedkin, M.: The biochemical events of mitosis. II. The invivo and invitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis. Biochemistry (Wash.) 6, 3126–3135 (1967)

    Google Scholar 

  • Wunderlich, F., Muller, R., Speth, V.: Direct evidence for a colchicine induced impairment in the mobility of membrane components. Science 182 1136–8 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Dr. Sally Hughes-Schrader, whose beautiful work in mantids clearly presaged the existence of chromosome movements in late prophase of meiosis; and whose enthusiasm over chromosome movements in general it was my pleasure to share during my stay at Duke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickards, G.K. Prophase chromosome movements in living house cricket spermatocytes and their relationship to prometaphase, anaphase and granule movements. Chromosoma 49, 407–455 (1975). https://doi.org/10.1007/BF00285133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285133

Keywords

Navigation