Skip to main content
Log in

Mechanisms of chromosome banding

V. Quinacrine banding

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A series of biochemical investigations were undertaken to determine the mechanism of Q-banding. The results were as follows: 1. In agreement with previous studies, highly AT-rich DNA, such as poly(dA)-poly(dT), markedly enhanced quinacrine fluorescence while GC containing DNA quenched fluorescence. These effects persisted at DNA concentrations comparable to those in the metaphase chromosome. 2. Studies of quinacrine-DNA complexes in regard to the hypochromism of quinacrine, DNA Tm, DNA viscosity, and equilibrium dialysis, indicated the quinacrine was bound by intercalation with relatively little side binding. 3. Single or double stranded nucleotide polymers, in the form of complete or partial helices, were 1000-fold more effective in quenching than solutions of single nucleotides, suggesting that base stacking is required for quenching. 4. Studies of polymers in the A conformation, such as transfer RNA and DNA-RNA hybrids, indicated that marked base tilting does not affect the ability of nucleic acids to cause quenching or enhancement of quinacrine fluorescence. 5. Salts inhibit the binding of quinacrine to DNA. 6. Spermine, polylysine and polyarginine, which bind in the small groove of DNA, inhibited quinacrine binding and quenching, while histones, which probably bind in the large groove, had little effect. This correlated with the observation that removal of histones with acid has no effect on Q-banding. 7. Mouse liver chromatin was separated into five fractions. At concentrations of quinacrine from 2×10−6 to 2×10−5 M all fractions inhibited to varying degrees the ability of the chromatin DNA to bind quinacrine and quench quinacrine fluorescence. At saturating levels of quinacrine two fractions, the 400 g pellet (rich in heterochromatin) and a dispersed euchromatin supernatant fraction, showed a decreased number of binding sites for quinacrine. These two fractions were also the richest in non-histone proteins. 8. DNA isolated from the different fractions all showed identical quenching of quinacrine fluorescence. 9. Mouse GC-rich, mid-band, AT-rich, and satellite DNA, isolated by CsCl and Cs2SO4-Ag+ centrifugation all showed identical quenching of quinacrine fluorescence, indicating that within a given organism, except for very AT or GC-rich satellites, the variation in base composition is not adequate to explain Q-banding. — We interpret these results to indicate that: (a) quinacrine binds to chromatin by intercalation of the three planar rings with the large group at position 9 lying in the small groove of DNA, (b) most pale staining regions are due to a decrease binding of quinacrine, and (c) this inhibition of binding is predominately due to non-histone proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, A. J., Fasman, G. C.: Circular dichroism studies of lysine-rich histone F1-deoxyribonucleic acid complexes. Effects of salts and dioxane upon configuration. J. phys. Chem. 75, 1516–1526 (1971)

    Google Scholar 

  • Allen, S. S., Grey, D. M., Robert, G. P., Tinoco, I.: The ultraviolet circular dichroism of synthetic and natural DNAs and analysis of spectra for sequence information. Biopolymers 11, 853–879 (1972)

    Google Scholar 

  • Armstrong, R. W., Kurucsev, T., Strauss, U. P.: The interaction between acridine dyes and deoxyribonucleic acid. J. Amer. chem. Soc. 92, 3174–3181 (1970)

    Google Scholar 

  • Arnott, S.: The geometry of nucleic acids. Progr. Biophys. molec. Biol. 21, 265–319 (1970)

    Google Scholar 

  • Arnott, S., Fuller, W., Hodgson, A., Prutton, I.: Molecular conformations and structure transitions of RNA complementary helices and their possible biological significance. Nature (Lond.) 220, 561–564 (1968)

    Google Scholar 

  • Arnott, S., Hutchison, F., Spencer, M., Wilkins, M. H. F., Fuller, W., Langridge, R.: X-ray diffraction studies of double helical ribonucleic acid. Nature (Lond.) 211, 227–232 (1966)

    Google Scholar 

  • Barr, G. F., Mikel, U., Engler, W. F.: Correlates of chromosomal banding at the level of ultrastructure. In: Chromosome identification—technique and applications in biology and medicine (T. Caspersson and L. Zech, eds.), p. 280–289. New York, N. Y.: Academic Press, Inc. 1973

    Google Scholar 

  • Berlowitz, L.: Analysis of histone in situ in developmentally inactivated chromatin. Proc. nat. Acad. Sci. (Wash.) 54, 476–480 (1965)

    Google Scholar 

  • Blake, A., Peacocke, A. R.: The interaction of aminoacridines with nucleic acids. Biopolymers 6, 1225–1253 (1968)

    Google Scholar 

  • Bobrow, M., Madan, K.: The effects of various banding procedures on human chromosomes, studies with acridine orange. Cytogenet. Cell Genet. 12, 145–156 (1973)

    Google Scholar 

  • Bostock, C. J., Christie, S.: Quinacrine fluorescence staining of chromosomes and its relationship to DNA base composition. Exp. Cell Res. 86, 157–161 (1974)

    Google Scholar 

  • Bostock, C. J., Prescott, D. M.: Buoyant density of DNA synthesized at different stages of the S phase of mouse L-cells. Exp. Cell Res. 64, 267–274 (1971)

    Google Scholar 

  • Bradley, D. F., Felsenfeld, G.: Aggregation of an acridine dye on native and denatured deoxyribonucleates. Nature (Lond.) 184, 1920–1922 (1959)

    Google Scholar 

  • Caspersson, T., Zech, L., Johansson, C., Modest, E. J.: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma (Berl.) 30, 215–227 (1970)

    Google Scholar 

  • Chang, C., Weiskopf, M., Li, H. J.: Conformation studies of nucleoprotein. Circular dichroism of deoxyribonucleic acid base pairs bound by polylysine. Biochemistry 12, 3028–3032 (1973)

    Google Scholar 

  • Cohen, G., Eisenberg, H.: Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8, 45–55 (1969)

    Google Scholar 

  • Comings, D. E.: Heterochromatin of the Indian muntjac: Replication, condensation, DNA ultracentrifugation, fluorescent and heterochromatin staining. Exp. Cell Res. 67, 441–460 (1971)

    Google Scholar 

  • Comings, D. E.: Replicative heterogeneity of mammalian DNA. Exp. Cell Res. 71, 106–112 (1972a)

    Google Scholar 

  • Comings, D. E.: The structure and function of chromatin. Advanc. Human Genet. 3, 237–431 (1972b)

    Google Scholar 

  • Comings, D. E.: Biochemical mechanisms of chromosome banding and color banding with acridine-orange. In: Chromosome identification—techniques and applications in biology and medicine (T. Caspersson and L. Zech, eds.), p. 293–299. New York, N. Y.: Academic Press, Inc. 1973

    Google Scholar 

  • Comings, D. E., Avelino, E.: Mechanisms of chromosome banding. II. Histones are not involved. Exp. Cell Res. 86, 202–206 (1974)

    Google Scholar 

  • Comings, D. E., Avelino, E., Okada, T. A., Wyandt, H. E.: The mechanism of C- and G-banding of chromosomes. Exp. Cell Bes. 77, 469–493 (1973)

    Google Scholar 

  • Comings, D. E., Okada, T. A.: DNA replication and the nuclear membrane. J. molec. Biol. 75, 609–618 (1973)

    Google Scholar 

  • Corneo, G., Ginelli, E., Polli, E.: Repeated sequences in human DNA. J. molec. Biol. 48, 319–327 (1970)

    Google Scholar 

  • Crick, F. H. C., Watson, J. D.: The complementary structure of deoxyribonucleic acid. Proc. roy. Soc. Lond. A 223, 80–96 (1954)

    Google Scholar 

  • Crothers, D. M., Zimm, B. H.: Theory of the melting transition of synthetic polynucleotides: Evaluation of the stacking free energy. J. molec. Biol. 9, 1–9 (1964)

    Google Scholar 

  • Dev, V. G., Grewal, M. S., Miller, D. A., Kouri, R. E., Hutton, J. J., Miller, O. J.: The quinacrine fluorescence karyotype of Mus musculus and demonstration of strain differences in secondary constrictions. Cytogenetics 10, 436–451 (1971)

    Google Scholar 

  • Dev, V. G., Warburton, E., Miller, O. J., Miller, D. A., Erlanger, B. F., Beiser, S. M.: Consistent pattern of binding of anti-adenosine antibodies to human metaphase chromosomes. Exp. Cell Res. 74, 288–293 (1972)

    Google Scholar 

  • Drummond, D. S., Pritchard, N. J., Simpson-Gildemeister, V. F. M., Peacocke, A. R.: Interaction of aminoacridines with deoxyribonucleic acid. Viscosity of the complexes. Biopolymers 4, 971–987 (1966)

    Google Scholar 

  • Ellison, J. R., Barr, H. J.: Quinacrine fluorescence of specific chromosome regions: late replication and high AT content in Samoaia leonensis. Chromosoma (Berl.) 36, 375–390 (1972)

    Google Scholar 

  • Farber, J., Baserga, R., Gabbay, E. J.: The effect of a reporter molecule on chromatin template activity. Biochim. biophys. Res. Commun. 43, 675–681 (1971)

    Google Scholar 

  • Felsenfeld, G.: Interaction of nucleic acids with cationic substances. In: The molecular basis of neoplasia, p. 104–119. Austin, Texas: University of Texas Press 1962

    Google Scholar 

  • Feughelman, M., Langridge, R., Seeds, W. E., Stockes, A. R., Wilson, H. R., Hopper, C. W., Wilkins, M. H. F., Barclay, R. K., Hamilton, L. D.: Molecular structure of deoxyribonucleic acid and nucleoprotein. Nature (Lond.) 175, 834–838 (1955)

    Google Scholar 

  • Fredericq, E., Houssier, C.: Study of the interaction of DNA and acridine orange by various optical methods. Biopolymers 11, 2281–2308 (1972)

    Google Scholar 

  • Frenster, J. H., Allfrey, V. G., Mirsky, A. E.: Repressed and active chromatin isolated from interphase lymphocytes. Proc. nat. Acad. Sci. (Wash.) 50, 1026–1032 (1963)

    Google Scholar 

  • Ganner, E., Evans, H. J.: The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma (Berl.) 35, 326–341 (1971)

    Google Scholar 

  • Gersch, N. F., Jordan, D. O.: Interaction of DNA with aminoacridines. J. molec. Biol. 13, 138–156 (1965)

    Google Scholar 

  • Golomb, H. M., Bahr, G. F.: Correlation of the fluorescent banding pattern and ultrastructure of a human chromosome. Exp. Cell Res. 84, 121–126 (1974)

    Google Scholar 

  • Gottesfeld, J. M., Bonner, J., Radda, G. K., Walker, I. O.: Biophysical studies on the mechanism of quinacrine staining of chromosomes. Biochemistry 13, 2937–2945 (1974)

    Google Scholar 

  • Green, G., Mahler, H. R.: Comparative study of polynucleotides in aqueous and glycol solutions. Biochemistry 9, 368–387 (1970)

    Google Scholar 

  • Guilbault, G. G.: Practical fluorescence, theory, methods and techniques, p. 26. New York, N. Y.: Marcel Dekker, Inc. 1973

    Google Scholar 

  • Hanlon, S., Johnson, R. S., Wolf, B., Chan, A.: Mixed conformations of deoxyribonucleic acid in chromatin: a preliminary report. Proc. nat. Acad. Sci. (Wash.) 69, 3262–3267 (1972)

    Google Scholar 

  • Heneen, W. K., Caspersson, T.: Identification of the chromosomes of rye by distribution patterns of DNA. Hereditas (Lund) 74, 259–272 (1973)

    Google Scholar 

  • Holcomb, D. N., Tinoco, I.: Conformation of polyriboadenylic acid: pH and temperature dependence. Biopolymers 3, 121–133 (1965)

    Google Scholar 

  • Ichimura, S., Zama, M., Fujita, H., Ito, T.: The nature of strong binding between acridine orange and deoxyribonucleic acid as revealed by equilibrium dialysis and thermal denaturation. Biochim. biophys. Acta (Amst.) 190, 116–125 (1969)

    Google Scholar 

  • Jones, K. W., Corneo, G.: Location of satellite and homogeneous DNA sequences on human chromosomes. Nature (Lond.) New Biol. 233, 268–271 (1971)

    Google Scholar 

  • Kaiser, D., Tabor, H., Tabor, C. W.: Spermine projection of coliphage λ DNA against breakage by hydrodynamic shear. J. molec. Biol. 6, 141–147 (1963)

    Google Scholar 

  • Kleinwachter, V., Balcarova, Z., Bohacek, J.: Thermal stability of complexes of diaminoacridines with deoxyribonucleic acids of varying base content. Biochim. biophys. Acta (Amst.) 174, 188–201 (1969)

    Google Scholar 

  • Kleinwachter, V., Koudelka, J.: Thermal denaturation of deoxyribonucleic acid-cridine orange complexes. Biochim. biophys. Acta (Amst.) 91, 539–540 (1964)

    Google Scholar 

  • Kurnick, N. B., Radcliffe, I. E.: Reaction between DNA and quinacrine and other antimalarials. J. Lab. clin. Med. 60, 669–688 (1962)

    Google Scholar 

  • LePecq, J.-B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. J. molec. Biol. 27, 87–106 (1967)

    Google Scholar 

  • Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18–30 (1961)

    Google Scholar 

  • Lerman, L. S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94–102 (1963)

    Google Scholar 

  • Lieberman, M. W.: Fractionation of mouse DNA in preparative Ag+-Cs2SO4 gradients. Biochim. biophys. Acta (Amst.) 324, 309–319 (1973)

    Google Scholar 

  • Lima-de-Faria, A.: Differential uptake of tritiated thymidine into heterochromatin and euchromatin in Melanopus and Secale. J. biophys. biochem. Cytol. 6, 457–466 (1959)

    Google Scholar 

  • Liquori, A. M., Constantino, L., Crescenzi, V., Elia, V., Giglio, E., Puliti, R., de Santis Savio, M., Vitagliano, V.: Complexes between DNA and polyamines: a molecular model. J. molec. Biol. 24, 113–122 (1967)

    Google Scholar 

  • Lloyd, P. H., Prutton, R. N., Peacocke, A. R.: Sedimentation studies on the interaction of proflavine with deoxyribonucleic acid. Biochem. J. 107, 353–359 (1968)

    Google Scholar 

  • Mandel, M.: The interaction of spermine and native deoxyribonucleic acid. J. molec. Biol. 5, 435–441 (1962)

    Google Scholar 

  • Mandel, M., Schildkraut, C. L., Marmur, J.: Use of density gradient analysis for determining the guanine plus cytosine content for DNA. In: Methods in enzymology, vol. XII B, p. 184–195 (L. Grossman and K. Moldave, eds.). New York, N. Y.: Academic Press, Inc. 1968

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961)

    Google Scholar 

  • Marushige, K., Bonner, J.: Fractionation of liver chromatin. Proc. nat. Acad. Sci. (Wash.) 68, 2941–2944 (1971)

    Google Scholar 

  • Marvin, D. A., Spencer, M., Wilkins, M. H. F., Hamilton, L. D.: The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J. molec. Biol. 3, 547–565 (1961)

    Google Scholar 

  • Mattoccia, E., Comings, D. E.: Buoyant density and satellite composition of DNA of mouse heterochromatin. Nature (Lond.) New Biol. 229, 175–176 (1971)

    Google Scholar 

  • McKay, R. D. G.: The mechanism of G and C banding in mammalian metaphase chromosomes. Chromosoma (Berl.) 44, 1–14 (1973)

    Google Scholar 

  • Michelson, A. M., Monny, C., Kovoor, A.: Action of quinacrine mustard on polynucleotides. Biochimie 54, 1129–1136 (1972)

    Google Scholar 

  • Milman, G., Chamberlain, M., Langridge, R.: The structure of a DNA-RNA hybrid. Proc. nat. Acad. Sci. (Wash.) 57, 1804–1810 (1967)

    Google Scholar 

  • Natarajan, A. T., Groop, A.: A fluorescence study of heterochromatin and nucleolar organization in the laboratory and tobacco mouse. Exp. Cell Res. 74, 245–250 (1972)

    Google Scholar 

  • Nelson, R. G., Johnson, W. C.: Conformation of DNA in ethylene glycol. Biochem. biophys. Res. Commun. 41, 211–216 (1970)

    Google Scholar 

  • Ochoa, M., Jr., Weinstein, I. B.: Spermine inhibition of polypeptide synthesis in a subcellular system derived from the L 1210 mouse ascites leukemia. Biochim. biophys. Acta (Amst.) 95, 176–179 (1965)

    Google Scholar 

  • Olins, D. E., Olins, A. L.: Model nucleohistones: The interaction of F1 and F2a1 histones and native T7 DNA. J. molec. Biol. 57, 437–455 (1971)

    Google Scholar 

  • Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)

    Google Scholar 

  • Peacocke, A. R.: The interaction of acridines with nucleic acids. In: Acridines, (R. Acheson, ed.), 2nd ed., p. 723–757. New York, N. Y.: Interscience Publishers, John Wiley & Sons 1973

    Google Scholar 

  • Peacocke, A. R., Skerrett, J. N. H.: The interaction of aminoacridines with nucleic acids. Faraday Soc. (Lond.) Trans. 52, 261–279 (1956)

    Google Scholar 

  • Rodman, T. C., Tahiliani, S.: The Feulgen banded karyotype of the mouse: Analysis of the mechanisms of banding. Chromosoma (Berl.) 42, 37–56 (1973)

    Google Scholar 

  • Rowley, J. D., Bodmer, W. F.: Relationship of centromeric heterochromatin to fluorescent banding patterns of metaphase chromosomes in the mouse. Nature (Lond.) 231, 503–506 (1971)

    Google Scholar 

  • Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949)

    Google Scholar 

  • Schreck, R. R., Warburton, D., Miller, O. J., Beiser, S. M., Erlanger, B. F.: Chromosome structure as revealed by a combined and immunochemical procedure. Proc. nat. Acad. Sci. (Wash.) 70, 804–807 (1973)

    Google Scholar 

  • Selander, R.-K.: Interaction of quinacrine mustard with mononucleotides and polynucleotides. Biochem. J. 131, 749–755 (1973)

    Google Scholar 

  • Selander, R.-K., de la Chapelle, A.: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–243 (1973)

    Google Scholar 

  • Simpson, R. T.: Interaction of a reporter molecule with chromatin. Evidence suggesting that the proteins of chromatin do not occupy the minor groove of deoxyribonucleic acid. Biochemistry 9, 4814–4819 (1970)

    Google Scholar 

  • Simpson, R. T., Reeck, G. R.: A comparison of the proteins of condensed and extended chromatin fractions of rabbit liver and calf thymus. Biochemistry 12, 3853–3858 (1973)

    Google Scholar 

  • Southern, D. M.: Base sequence and evolution of guinea-pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970)

    Google Scholar 

  • Studdert, D. S., Patroni, M., Davis, R. C.: Circular dichroism of DNA: Temperature and salt dependence. Biopolymers 11, 761–779 (1972)

    Google Scholar 

  • Suwalsky, M., Traub, W.: A comparative X-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine. Biopolymers 11, 2223–2231 (1972)

    Google Scholar 

  • Suwalsky, M., Traub, W., Subirana, J. A.: An X-ray study of the interaction of DNA with spermine. J. molec. Biol. 42, 363–373 (1969)

    Google Scholar 

  • Tabor, H., Tabor, C. W.: Spermidine, spermine and related amines. Pharmacol. Rec. 16, 245–300 (1964)

    Google Scholar 

  • Tinoco, I.: Hypochromism in polynucleotides. J. Amer. chem. Soc. 82, 4785–4790 (1960)

    Google Scholar 

  • Tobia, A., Schildkraut, C. L., Maio, J. J.: DNA replication in synchronized cultured mammalian cells. I. Time of synthesis of molecules of different average guanine + cytosine content. J. molec. Biol. 54, 499–515 (1971)

    Google Scholar 

  • Tunis-Schneider, M. J. B., Maestre, M. J.: Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films—A preliminary study. J. molec. Biol. 52, 521–541 (1970)

    Google Scholar 

  • Van Holde, K. E.: Physical Biochemistry, p. 168–170. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1971

    Google Scholar 

  • Weisblum, B., deHaseth, P. L.: Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)

    Google Scholar 

  • Weisblum, B., deHaseth, P. L.: Nucleotide specificity of the quinacrine staining reaction for chromosomes. Chromosomes today 4, 35–51 (1973)

    Google Scholar 

  • Wilkins, M. H. F.: Physical studies on the molecular structure of deoxyribonucleic acid. Cold Spr. Harb. Symp. quant. Biol. 21, 75–90 (1956)

    Google Scholar 

  • Yang, J. T., Samejima, T.: Optical rotary dispersion and circular dichroism of nucleic acids. Progr. Nucleic Acid Res. and molec. Biol. 9, 223–300 (1969)

    Google Scholar 

  • Yunis, J. J., Sanchez, O.: G-banding and chromosome structure. Chromosoma (Berl.) 44, 15–23 (1973)

    Google Scholar 

  • Zakharov, A. F., Egolina, N. A.: Differential spiralization along mammalian chromosomes. I. BUdR revealed differentiation in Chinese hamster chromosomes. Chromosoma (Berl.) 38, 341–365 (1972)

    Google Scholar 

  • Zimm, B. H., Crothers, D. M.: Simplified rotating cylinder viscometer for DNA. Proc. nat. Acad. Sci. (Wash.) 48, 905–911 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comings, D.E., Kovacs, B.W., Avelino, E. et al. Mechanisms of chromosome banding. Chromosoma 50, 111–145 (1975). https://doi.org/10.1007/BF00283236

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283236

Keywords

Navigation