Skip to main content
Log in

Origin of genetic variation: regulation of genetic recombination in the higher organisms — a theory

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Recent studies in the fungi, particularly Neurospora and Schizophyllum, have revealed a number of genetic features which, viewed in conjunction with earlier observations on other organisms, form a pattern, or model, which appears to be basic to the control of recombination in all eukaryotes, including higher organisms. It is assumed that the control is exercised on mechanisms that produce new alleles through recombination, as understood in broad terms and including such a likely phenomenon as gene conversion, which may or may not involve crossing-over, as well as equal and unequal crossing-over. The recombination may thus occur between alleles in either the homozygous or heterozygous condition. In the model, regulatory genes and breeding behaviour are integrated into one self-regulatory system controlling the production of new genetic variation.

The model is based on the following five general features, largely substantiated by the results in Neurospora and Schizophyllum: 1) The frequency of recombination in a particular chromosomal region is controlled by specific regulatory genes (rec). 2) There may be a number of such specific, regulatory genes responsible for recombination in a given region. 3) A rec. locus may influence recombination in more than one region. 4) The regulatory genes have no specific physical relationship with the region(s) they control, and are usually located at random in the genome. 5) Of the allelic forms of the regulatory genes it is always the dominant gene which suppresses recombination and the recessive gene which increases recombination. The rec system is epistatic to other genetic elements jointly involved in the overall control of recombination in a specific region. It is suggested that usually the control of recombination in a given region is exercised, cumulatively, by the balance of the dominant and recessive genes of the specific rec loci in the organism. Outbreeding, with the associated high heterozygosity of the regulatory rec loci, virtually “switches off” recombination, producing few new variations. Inbreeding produces homozygosity of these loci, resulting in certain individuals which will have a considerable number of their regulatory loci in the homozygous recessive condition and in which recombination will be “switched on”, producing new variation at a high frequency. Inbreeding is thus an integrated, evolutionary system of considerable importance, and is not a degenerate “dead end”, as many investigators have previously thought.

The model has another compensatory function in evolution. In major loci, or in an operon, where there are structural genes and closely linked operator genes, as exemplified by the S locus, there are indications that the present model is concerned with the regulation of both structural and operator genes. The consequences of the model in the two classes of genes, however, are in direct contrast to each other: High heterozygosity which is instrumental in switching “off” recombination, and which is therefore helpful in maintaining stability in the structural gene, is conducive to functional variation of the operator gene; and high homozygosity, which is instrumental in switching “on” recombination, and which is therefore helpful in producing variation in the structural gene, is conducive to the stability of the operator gene.

This model of the control of genetic variation in a specific chromosomal region is significant in development as well as in evolution, and throws light on a number of hitherto “intractable” problems peculiar to the higher organisms. For example, the model is helpful in explaining: 1) the origin of new self-incompatibility alleles in the flowering plants; 2) the impressive speciation in the waif flora (and fauna) of the oceanic islands; 3) the presence of high genetic variability in inbreeding species of plants; 4) environmentally-induced heritable variation in certain plants; and 5) the genetic mechanism of antibody diversity in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Allard, R. W.: Genetic systems associated with colonizing ability in predominantly self-pollinated species. In: H. G. Baker and G. L. Stebbins, Eds., The Genetics of Colonizing Species, pp. 50–76. New York: Academic Press 1965.

    Google Scholar 

  2. Allard, R. W.: Population structure and performance in crop plants. Ciencia Cult., Sao Paulo, 19, 145–150 (1966).

    Google Scholar 

  3. Allard, R. W., Jain, S. K., Workman, P. L.: The genetics of inbreeding populations. Adv. Genet. 14, 55–131 (1968).

    Google Scholar 

  4. Antonovics, J.: Evolution in closely adjacent plant populations. V. Evolution of self-fertility. Heredity 23, 219–238 (1968).

    Google Scholar 

  5. Andrewartha, H. C., Birch, L. C.: The distribution and abundance of animals. Chicago: Univ. Chicago Press 1954.

    Google Scholar 

  6. Angel, T., Austin, B., Catcheside, D. G.: Regulation of recombination at the his-3 locus in Neurospora crassa. Aust. J. biol. Sci. 23, 1229–1240 (1970).

    Google Scholar 

  7. Atwood, S. S.: Oppositional alleles in natural populations of Trifolium repens. Genetics 29, 428–435 (1944).

    Google Scholar 

  8. Auerbach, C.: The chemical production of mutations. Science 158, 1141–1147 (1967).

    Google Scholar 

  9. Baker, H. G.: Self-compatibility and establishment after “long-distance” dispersal. Evolution 9, 347–348 (1955).

    Google Scholar 

  10. Baker, H. G.: Rapid speciation in relation to changes in the breeding system of plants. Recent Adv. in Bot. 1, 881–885 (1959a).

    Google Scholar 

  11. Baker, H. G.: Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb. Symp. quant. Biol. 24, 177–191 (1959b).

    Google Scholar 

  12. Bonner, J.: Molecular biology of development. Oxford: Clarendon Press, 1965.

    Google Scholar 

  13. Brewbaker, J. L., Natarajan, A. T.: Centric fragments and pollen-part mutation of incompatibility alleles in Petunia. Genetics 45, 699–704 (1960).

    Google Scholar 

  14. Brun, J.-L.: Genetic adaptation of Caenorhabditis elegans (Nematoda) to high temperatures. Science 150, 1467 (1965).

    Google Scholar 

  15. Burnet, M. F.: Self and Not-Self. Melbourne: University Press 1969.

    Google Scholar 

  16. Burnet, M. F.: A certain symmetry: Histocompatibility antigens compared with immunocyte receptors. Nature 226, 123–126 (1970).

    Google Scholar 

  17. Callan, H. G.: The nature of lampbrush chromosomes. Int. Rev. Cytol. 15, 1–34 (1963).

    Google Scholar 

  18. Callan, H. G.: The organization of genetic units in chromosomes. J. Cell Sci. 2, 1–7 (1967).

    Google Scholar 

  19. Carlquist, S.: Island Life. A Natural History of the Islands of the World. Garden City, New York: Natural History Press, Doubleday & Co., 1965.

    Google Scholar 

  20. Carlquist, S.: The biota of long-distance dispersal. IV. Genetic systems in the floras of oceanic islands. Evolution 20, 433–455 (1966).

    Google Scholar 

  21. Catcheside, D. E. A.: Control of recombination within the nitrate-2 locus of Neurospora crassa: An unlinked dominant gene which reduces prototroph yields. Aust. J. biol. Sci. 23, 855–865 (1970).

    Google Scholar 

  22. Catcheside, D. G.: A second gene controlling allelic recombination in Neurospora crassa. Aust. J. biol. Sci. 19, 1039–1046 (1966).

    Google Scholar 

  23. Catcheside, D. G.: The control of genetic recombination in Neurospora crassa. In: W. J. Peacock, and R. D. Brock (Eds.), Replication and Recombination of Genetic Material, pp. 216–226. Canberra: Australian Academy of Science, 1969.

    Google Scholar 

  24. Catcheside, D. G., Jessop, A. P., Smith, B. R.: Genetic controls of allelic recombination in Neurospora. Nature 202, 1242–1243 (1964).

    Google Scholar 

  25. Clark, A. J.: The beginning of a genetic analysis of recombination proficiency. J. Cellular Physiol. 70, Suppl. 1, 165–180 (1967).

    Google Scholar 

  26. Clausen, J.: Partial apomixis as an equilibrium system in evolution. Caryologia, Suppl., 469–479 (1954).

  27. Crowe, L. K.: Polygenic control of out-breeding in Borago officinalis. Heredity 25, 497 (1970).

    Google Scholar 

  28. Darlington, C. D.: The evolution of genetic systems, 2nd ed. London and Edinburgh: Oliver & Boyd 1958.

    Google Scholar 

  29. Darlington, C. D., Mather, K.: The elements of genetics. London: Allen & Unwin 1952.

    Google Scholar 

  30. Darlington, P. J.: Biogeography of the southern end of the world. Cambridge, Massachusetts: Harvard Univ. Press. 1965.

    Google Scholar 

  31. Davitashvili, L. S.: Deficiencies of the synthetic theory of evolution. Evolution 23, 513–516 (1969).

    Google Scholar 

  32. Davis, J. H.: Evidences of trans-oceanic dispersal of plants to New Zealand. Tuatara 3, 87–97 (1950).

    Google Scholar 

  33. Dean, A. C. R., Hinshelwood, C.: Aspect of the problem of drug resistance in bacteria. In: Drug Resistance in Micro-organisms: Mechanism of Development (for Ciba Foundation), pp. 4–24, London 1957.

  34. Denward, T.: The function of the incompatibility alleles in red clover (Trifolium pratense L.). Hereditas (Lund) 49, 189–334 (1963).

    Google Scholar 

  35. Durrant, A.: The environmental induction of heritable changes in Linum. Heredity 17, 27–61 (1962).

    Google Scholar 

  36. Eigsti, O. J., Dustin Jr., P.: Colchicine — in Agriculture, Medicine, Biology and Chemistry. Ames: Iowa State College Press 1955.

    Google Scholar 

  37. Evans, G. M., Durrant, A., Rees, H.: Associated nuclear changes in the introduction of flax genotrophs. Nature 212, 697–699 (1966).

    Google Scholar 

  38. Fryxell, P. A.: The evolutionary position of inbreeding systems. In: Recent Advances in Botany, pp. 887–891, Univ. of Toronto Press 1961.

  39. Gale, M. D., Rees, H.: Genes controlling Chiasma frequency in Hordeum. Heredity 25, 393–410 (1970).

    Google Scholar 

  40. Gally, J. A., Edelman, G. M.: Somatic translocation of antibody genes. Nature 227, 341–348 (1970).

    Google Scholar 

  41. Gowan, J. W.: Meiosis as a genetic character in Drosophila melanogaster. J. Expl. Zool. 65, 83–106 (1933).

    Google Scholar 

  42. Grant, V.: The regulation of recombination in plants. Cold Spring Harb. Symp. quant. Biol. 23, 337–363 (1958).

    Google Scholar 

  43. Gregg, T. G.: Latent neomorphs and the evolution of dominance. Evolution 21, 850–852 (1967).

    Google Scholar 

  44. Hill, J.: The environmental induction of heritable changes in Nicotiana rustica parental and selection lines. Genetics 55, 735–754 (1967).

    Google Scholar 

  45. Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. Camb. 5, 282–304 (1964).

    Google Scholar 

  46. Hood, L., Talmage, D. W.: Mechanism of antibody diversity: Germ line basis for variability. Science 168, 325–334 (1970).

    Google Scholar 

  47. House, H. R.: Bursts in evolution. Advancement of Sci., March issue, 499–507 (1963).

  48. Jessop, A. P., Catcheside, D. G.: Inter-allelic recombination at the his-1 locus in Neurospora crassa and its genetic control. Heredity 20, 237–256 (1965).

    Google Scholar 

  49. Jha, K. K.: Genetic control of allelic recombination at the histidine-3 locus of Neurospora crassa. Genetics 57, 865–873 (1967).

    Google Scholar 

  50. Kannenberg, L. W., Allard, R. W.: Population studies in predominantly self-pollinated species. VIII. Genetic variability in the Festuca microstachys complex. Evolution 21, 227–240 (1967).

    Google Scholar 

  51. Kedes, L. H., Birnstiel, M. L.: Reiteration and clustering of DNA sequences complementary to histone messenger RNA. Nature New Biology 230, 165–169 (1971).

    Google Scholar 

  52. Laughnan, J. R.: The nature of mutations in terms of gene and chromosome changes. In: Mutation and Plant Breeding, Publ. No. 891 NASNRC, Washington, D.C., 3–29 (1961).

  53. Law, C. N.: Recombination in the X-chromosome of Drosophila melanogaster. Nature 191, 1180–1181 (1961).

    Google Scholar 

  54. Lawrence, M. J.: The control of crossing-over in the x-chromosome of Drosophila melanogaster. Heredity 18, 27–46 (1963).

    Google Scholar 

  55. Lewis, D.: Comparative incompatibility in angiosperms and fungi. Adv. Genet. 6, 235 to 285 (1954).

    Google Scholar 

  56. Lewis, D.: Genetic control of specificity and activity of the S antigen in plants. Proc. Roy. Soc., B, 151, 468–477 (1960).

    Google Scholar 

  57. Lewis, D., Crowe, L. K.: Unilateral incompatibility in flowering plants. Heredity 12, 233–256 (1958).

    Google Scholar 

  58. Lindsley, D. L., Sandler, L., Nicoletti, B., Trippa, G.: Genetic control of recombination in Drosophila. In: W. J. Peacock, and R. D. Brock (Eds.), Replication and Recombination of Genetic Material, pp. 253–269. Canberra: Australian Academy of Science, 1968.

    Google Scholar 

  59. Mather, K.: Polygenic inheritance and natural selection. Biol. Rev. 18, 32–64 (1943).

    Google Scholar 

  60. Mather, K.: Genetical control of incompatibility and fungi. Nature 153, 392–394 (1944).

    Google Scholar 

  61. Mather, K.: Biometrical Genetics — The Study of Continuous Variation. New York: Dover Publications Inc. 1949.

    Google Scholar 

  62. Mather, K.: The genetical structure of populations. Symposia Soc. Exp. Biol. 7 (Evolution), 66–93 (1953).

    Google Scholar 

  63. Mather, K.: Quantitative and population genetics. Variability and selection. Proc. Roy. Soc. B. 164, 328–340 (1966).

    Google Scholar 

  64. McClintock, B.: The origin and behaviour of mutable loci in maize. Proc. Nat. Acad. Sci. (Wash.) 36, 344–355 (1950).

    Google Scholar 

  65. McClintock, B.: Controlling elements and the gene. Cold Spring Harb. Symp. quant. Biol. 21, 197–216 (1957).

    Google Scholar 

  66. McClintock, B.: Some parallels between gene control systems in maize and bacteria. Amer. Nat. 95, 265–277 (1961).

    Google Scholar 

  67. de Nettancourt, D., Ecochard, R.: New incompatibility specificities in the M3 progeny of a clonal population of L. peruvianum. T.G.G. report 19, 16 (1969).

    Google Scholar 

  68. Ohno, S., Wolf, U., Atkin, N. B.: Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187 (1968).

    Google Scholar 

  69. Pandey, K. K.: Mutations of self-incompatibility alleles in Trifolium pratense and T. repens. Genetics 41, 327–343 (1956).

    Google Scholar 

  70. Pandey, K. K.: Mutations of the self-incompatibility gene (S) and pseudo-compatibility in angiosperms. Lloydia 22, 222–234 (1959).

    Google Scholar 

  71. Pandey, K. K.: Centric chromosome fragments and pollen-part mutations of the incompatibility gene in Nicotiana alata. Nature 206, 792–795 (1965).

    Google Scholar 

  72. Pandey, K. K.: Evolutionary implications of embryonic tolerance. A theory of vertebrate evolution. Sci. and Cult. 32, 348–357 (1966).

    Google Scholar 

  73. Pandey, K. K.: Elements of the S-gene complex. II. Mutation and complementation at the SI locus in Nicotiana alata. Heredity 22, 255–283 (1967).

    Google Scholar 

  74. Pandey, K. K.: Compatibility relationships in flowering plants: Role of the S-gene complex. Amer. Nat. 102, 475–489 (1968a).

    Google Scholar 

  75. Pandey, K. K.: Colchicine-induced changes in the self-incompatibility behaviour of Nicotiana. Genetica 39, 257–271 (1968b).

    Google Scholar 

  76. Pandey, K. K.: Elements of the S-gene complex. III. Chromosome fragments and naturally occurring S-gene mutations in Nicotiana bonariensis. Heredity 24, 353–360 (1969a).

    Google Scholar 

  77. Pandey, K. K.: Elements of the S-gene complex. IV. S-allele polymorphism in Nicotiana species. Heredity 24, 601–619 (1969b).

    Google Scholar 

  78. Pandey, K. K.: Elements of the S-gene complex. V. Interspecific cross-compatibility relationships and theory of the evolution of the S complex. Genetica 40, 447–474 (1969c).

    Google Scholar 

  79. Pandey, K. K.: X irradiation induced S-gene mutations, accumulated centric chromosome fragments, and evolution of B-chromosomes. In: FAO/IAEA Symposium on the Nature, Induction, and Utilization of Mutations in Plants, IAEA, Vienna, 621–635 (1969d).

    Google Scholar 

  80. Pandey, K. K.: New self-incompatibility alleles produced through inbreeding. Nature 227, 689–690 (1970a).

    Google Scholar 

  81. Pandey, K. K.: Elements of the S-gene complex. VI. Mutations of the self-incompatibility gene, pseudo-compatibility and origin of new self-incompatibility alleles. Genetica 41, 477–516 (1970b).

    Google Scholar 

  82. Rees, H.: Genotypic control of chromosome form and behaviour. Bot. Rev. 27, 288–318 (1961).

    Google Scholar 

  83. Rees, H., Thompson, J. B.: Genotypic control of chromosome behaviour in rye. III. Chiasma frequency in homozygotes and heterozygotes. Heredity 10, 402–424 (1956).

    Google Scholar 

  84. Rendel, J. M.: Genetic control of developmental process. In: R. C. Lewontin (Ed.), Population Biology and Evolution, pp. 47–66. New York: Syracuse Univ. Press 1968.

    Google Scholar 

  85. Rhoades, M. M.: The genetic control of mutability in maize. Cold Spring Harb. Symp. quant. Biol. 9, 138–144 (1941).

    Google Scholar 

  86. Riley, R., Law, C. N.: Genetic variation in chromosome pairing. Adv. Genet. 13, 57–114 (1965).

    Google Scholar 

  87. Ritossa, F. M., Spiegelman, S.: Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. Nat. Acad. Sci. (Wash.) 53, 737–745 (1965).

    Google Scholar 

  88. Schulke, J. D.: Genetic variability in natural populations of Lolium multiflorum. Ph. D. Dissertation, Univ. of Calif., Davis, Calif. (1963).

    Google Scholar 

  89. Simchen, G.: Genetic control of recombination and the incompatibility system in Schizophyllum commune. Genet. Res. 9, 195–210 (1967).

    Google Scholar 

  90. Simchen, G., Connolly, V.: Changes in recombination frequency following inbreeding in Schizophyllum. Genetics 58, 319–326 (1968).

    Google Scholar 

  91. Simchen, G., Stamberg, J.: Fine and coarse controls of recombination. Nature 222, 329–332 (1969a).

    Google Scholar 

  92. Simchen, G., Stamberg, J.: Genetic control of recombination in Schizophyllum commune: Specific and independent regulation of adjacent and non-adjacent chromosomal regions. Heredity 24, 369–381 (1969b).

    Google Scholar 

  93. Smith, B. R.: Genetic controls of recombination I. The recombination-2 gene of Neurospora crassa. Heredity 21, 481 to 498 (1966).

    Google Scholar 

  94. Stadler, D. R., Towe, A. M.: Genetic factors influencing crossing-over frequency in Neurospora. Genetics 47, 839–846 (1962).

    Google Scholar 

  95. Stamberg, J.: Two independent gene systems controlling recombination in Schizophyllum commune. Molec. Gen. Genetics 102, 221–228 (1968).

    Google Scholar 

  96. Stamberg, J.: Genetic control of recombination in Schizophyllum commune: Separation of the controlled and controlling loci. Heredity 24, 306 to 309 (1969a).

    Google Scholar 

  97. Stamberg, J.: Genetic control of recombination in Schizophyllum commune: The occurrence and significance of natural variation. Heredity 24, 361 to 368 (1969b).

    Google Scholar 

  98. Stebbins, G. L.: Variation and Evolution in Plants. New York: Columbia Univ. Press 1950.

    Google Scholar 

  99. Stebbins, G. L.: Self-fertilization and population variability in the higher plants. Amer. Nat. 91, 337–354 (1957).

    Google Scholar 

  100. Stebbins, G. L.: Longevity, habitat, and release of genetic variability in the higher plants. Cold Spring Harb. Symp. quant. Biol. 23, 365–378 (1958).

    Google Scholar 

  101. Stebbins, G. L.: The comparative evolution of genetic systems. In: S. Tax (Ed.), Evolution After Darwin, Vol.I, pp. 197–226. Chicago: Univ. Chicago Press 1960.

    Google Scholar 

  102. Stebbins, G. L.: Processes of organic evolution. Englewood Cliffs, N.J.: Prentice-Hall 1966.

    Google Scholar 

  103. Stebbins, G. L.: Integration of development and evolutionary progress. In: R. C. Lewontin (Ed.), Population Biology and Evolution, pp. 17–36. New York: Syracuse Univ. Press 1968.

    Google Scholar 

  104. Sun, S., Rees, H.: Genotypic control of chromosome behaviour in rye. VII. Unadaptive heterozygotes. Heredity 19, 357–367 (1964).

    Google Scholar 

  105. Van't Hof, J., Sparrow, A. H.: A relationship between DNA content, nuclear volume and minimum mitotic cycle time. Proc. Nat. Acad. Sci. (Wash.) 49, 897–901 (1963).

    Google Scholar 

  106. Waddington, C. H.: Genetic assimilation. Adv. Genet. 10, 257–293 (1961).

    Google Scholar 

  107. Waddington, C. H.: Towards a theoretical biology. Nature 218, 525–527 (1968).

    Google Scholar 

  108. Whitehouse, H. L. K.: A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199, 1034–1040 (1963).

    Google Scholar 

  109. Whitehouse, H. L. K.: A cycloid model for the chromosome. J. Cell Sci. 2, 9–22 (1967).

    Google Scholar 

Addendum

  1. Catcheside, D. G., Austin, B.: The control of allelic recombination at histidine loci in Neurospora crassa. Am. J. Bot. 56, 685–690 (1969).

    Google Scholar 

  2. Whitehouse, H. L. K.: An operator model of crossing-over. Nature 211, 708–713 (1966).

    Google Scholar 

  3. Catcheside, D. E. A.: Regulation of the Am-1 locus in Neurospora: Evidence of independent control of allelic recombination and gene expression. Genetics 59, 443–452 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Stubbe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, K.K. Origin of genetic variation: regulation of genetic recombination in the higher organisms — a theory. Theoret. Appl. Genetics 42, 250–261 (1972). https://doi.org/10.1007/BF00277552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277552

Keywords

Navigation