Skip to main content
Log in

A collocation approach to the numerical calculation of simple gradients in reaction-diffusion systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reaction diffusion equations are frequently used to model pattern formation problems in biology, but numerical experiments in two or three space dimensions can be expensive in computing time. We show that the spectral method with collocation is a particularly efficient method for the numerical study of the evolution of simple patterns in such models. In many cases of interest, the scheme is sufficiently simple and efficient for calculations to be carried out on a micro-computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmuty, J. F. G.: Qualitative effects of diffusion in chemical systems. Some mathematical questions in biology 9. (Proceedings of the 11th symposium on mathematical biology, Denver, Colorado, 1977), Amer. Math. Soc., Providence, 49–99 (1978)

    Google Scholar 

  2. Babloyantz, A., Hiernaux, J.: Models for cell differentiation. Bull. Math. Biol. 37, 637–657 (1975)

    Google Scholar 

  3. Berding, C., Haken, H.: Pattern formation in morphogenesis. Analytic treatment of the Gierer-Meinhardt model on a sphere. J. Math. Biol. 14, 133–151 (1982)

    Google Scholar 

  4. Billing, G. D., Hunding, A.: Bifurcation analysis of nonlinear reaction-diffusion systems: Dissipative structure on a sphere. J. Chem. Phys. 69, 3603–3610 (1978)

    Google Scholar 

  5. Brown, K. J., Eilbeck, J. C.: Bifurcation, stability diagrams, and varying diffusion coefficients in reaction-diffusion equations. Bull. Math. Biol. 44, 87–102 (1982)

    Google Scholar 

  6. Catalano, G., Eilbeck, J. C., Monroy, A., Parisi, E.: A model for early segregation of territories in the ascidian egg. Cell lineage, stem cells and cell determination, pp. 15–28. Amsterdam: Elsevier/North-Holland Biomedical Press 1979

    Google Scholar 

  7. Catalano, G., Eilbeck, J. C., Monroy, A., Parisi, E.: A mathematical model for pattern formation in biological systems. Physica D: Nonlinear Phenomena 3, 439–456 (1981)

    Google Scholar 

  8. Eilbeck, J. C.: A strategy for investigating solutions of coupled nonlinear diffusion equations, with applications to pattern formation in biology. In: (L. M. Ricciardi, A. C. Scott, eds.) Biomathematics: Current status and future perspectives, pp. 95–109. Amsterdam: North-Holland 1982

    Google Scholar 

  9. Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Lecture notes in biomathematics, vol. 28. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  10. Gierer, A., Meinhardt, H.: Theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Google Scholar 

  11. Gierer, A., Meinhardt, H.: Biological pattern formation involving lateral inhibition. Lectures on Mathematics in Life Sciences 7, 163–183 (1974)

    Google Scholar 

  12. Goldbeter, A.: Patterns of spatiotemporal organization in an allosteric enzyme model. Proc. Natl. Acad. Sci. USA 70, 3255–3259 (1973)

    Google Scholar 

  13. Gottlieb, D., Orszag, S. A.: Numerical analysis of spectral methods: Theory and applications. SIAM, Philadelphia, 1977

    Google Scholar 

  14. Haken, H., Olbrich, H.: Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis. J. Math. Biol. 6, 317–331 (1978)

    Google Scholar 

  15. Haken, H.: Synergetics, an introduction (2nd edition). Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  16. Herschkowitz-Kaufman, M.: Bifurcation analysis of nonlinear reaction-diffusion equations — II. Steady state solutions and comparisons with numerical simulations. Bull. Math. Biol. 37, 589–635 (1975)

    Google Scholar 

  17. Hunding, A.: Dissipative structures in reaction-diffusion systems: Numerical determination of bifurcations in the sphere. J. Chem. Phys. 72, 5241–5248 (1980)

    Google Scholar 

  18. McCrory, R. L., Orszag, S. A.: Spectral methods for multi-dimensional diffusion problems. J. Comp. Phys. 37, 93–112 (1980)

    Google Scholar 

  19. Mimura, M., Nishiura, Y.: Spatial patterns for an interaction-diffusion equation in morphogenesis. J. Math. Biol. 7, 243–263 (1979)

    Google Scholar 

  20. Morse, P. M., Feshbach, H.: Methods of theoretical physics, Part 2. New York: McGraw-Hill 1953

    Google Scholar 

  21. Murray, J. D.: Lectures on nonlinear-differential-equation models in biology. Oxford: Clarendon Press 1977

    Google Scholar 

  22. Murray, J. D.: On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. R. Soc. London B 295, 473–496 (1981)

    Google Scholar 

  23. Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. New York: John Wiley 1977

    Google Scholar 

  24. Olver, F. W. J. (ed.): Bessel functions. III. Zeros and associated values. Royal Society Mathematical Tables Volume 7. Cambridge: University Press 1960

    Google Scholar 

  25. Orszag, S. A.: Spectral methods for problems in complex geometries. J. Comp. Phys. 37, 70–92 (1980)

    Google Scholar 

  26. Prigogine, I., Nicolis, G.: On symmetry-breaking instabilities in dissipative systems. J. Chem. Phys. 46, 3542–3550 (1967)

    Google Scholar 

  27. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Google Scholar 

  28. Sel'kov, E. E.: Self-oscillations in glycolysis. I. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968)

    Google Scholar 

  29. Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. B237, 37–72 (1952)

    Google Scholar 

  30. Winfree, A. T.: The geometry of biological time. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eilbeck, J.C. A collocation approach to the numerical calculation of simple gradients in reaction-diffusion systems. J. Math. Biology 16, 233–249 (1983). https://doi.org/10.1007/BF00276504

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276504

Key words

Navigation