Skip to main content
Log in

Gynodioecy as a possible populational strategy for increasing reproductive output

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Cytoplasmic male steriles occur regularly in wild populations of the annual crucifer Hirschfeldia incana Lagr.-Foss. in Israel. In these plants numbers of ovules per flower, numbers of seed per fruit, and total seed weights per plant are slightly higher than in the hermaphrodites with which they mate. Yet their frequencies in wild populations do not exceed 2–10 per cent. There are no signs of incipient dioecy. The species is self incompatible and no mechanisms to enforce outcrossing are needed. It is argued that in this and similar cases gynodioecy functions as a pollen saving measure. Precise pollen presentation in the flower renders some of the pollen redundant and facilitates its abolition in a sector of the population. It is possible that the enhanced seed fecundity of the pollenless sector stems from a greater availability of plant resources for seed production in the unisexual than in the bisexual seed parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arroyo, K.M.T.; Raven, P.H. (1975): The evolution of subdioecy in morphologically gynodioecious species of Fuchsia sect. Encliandra (Onagraceae). Evolution 29, 500–511

    Google Scholar 

  • Assouad, W.B.; Dommée, B.; Loumaret, R.; Valdeyron, G. (1978): Reproductive capacities in the sexual forms in the gynodioecious species Thymus vulgaris L. Bot. J. Linnean Soc. 77, 29–30

    Google Scholar 

  • Brewbaker, J.L.; Kwack, B.H. (1963): The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50, 859–865

    Google Scholar 

  • Burrows, C.J. (1960): Studies in Pimelea. 1: The breeding system. Transact. Roy. Soc. New Zeal. 88, 29–45

    Google Scholar 

  • Burtt, B.L. (1978): Notes on the evolution of Compositae: Compositae Newsl. 7, 6–7

    Google Scholar 

  • Charlesworth, B.; Charlesworth, D. (1978): A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997

    Google Scholar 

  • Charnov, E.L.; Maynard Smith, J.; Bull, J.J. (1976): Why be a hermaphrodite? Nature 263, 125–126

    Google Scholar 

  • Connor, H.E. (1973): Breeding systems in Cortaderia. Evolution 20, 433–455

    Google Scholar 

  • Correns, C. (1916): Untersuchungen über Geschlechtsbestimmung bei Distelarten, Sber.-Kgl. Preuß. Akad. Wiss. 20, 448–477

    Google Scholar 

  • Cruden, R.W. (1977): Pollen-ovule ratios; a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46

    Google Scholar 

  • Darwin, C.R. (1877): The different forms of flowers on plants of the same species. London: John Murray

    Google Scholar 

  • Horovitz, A.; Galil, J. (1972): Gynodioecism in East Mediterranean Hirsfeldia incana. Bot. Gaz. 133, 127–131

    Google Scholar 

  • Horovitz, A.; Hording, J. (1972): Genetics of Lupinus. 5: Intraspecific variability for reproductive traits in Lupinus nanus. Bot. Gaz. 133, 155–165

    Google Scholar 

  • Hutchinson, J. (1959): The families of flowering plants. Oxford: Clarendon Press

    Google Scholar 

  • Ilan, R.; Galil, J.; Horovitz, A. (1977): Effects of low temperatures and short days on sex expression in male sterile Hirschfeldia incana. Isr. J. Bot. 26, 51–52

    Google Scholar 

  • Lewis, D. (1941): Male sterility in natural populations of hermaphrodite plants. New Phytol. 40, 56–63

    Google Scholar 

  • Lloyd, D.G. (1974): Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32, 11–34

    Google Scholar 

  • Lloyd, D.G. (1976): The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor. Pop. Biol. 9, 299–316

    Google Scholar 

  • Lloyd, D.G.; Myall, A.J. (1976): Sexual dimorphism in Cirsium arvense L. Scop. Ann. Bot. 40, 115–123

    Google Scholar 

  • Mather, K. (1940): Outbreeding and separation of the sexes. Nature 145, 484–486

    Google Scholar 

  • Ross, M.D. (1978): The evolution of gynodioecy and subdioecy. Evolution 32, 174–188

    Google Scholar 

  • Ross, M.D.; Weir, B.S. (1975): Maintenance of male sterility in plant populations. 3: Mixed selfing and random mating. Heredity 35, 21–29

    Google Scholar 

  • Ross, M.D.; Wek, B.S. (1976): Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. Evolution 30, 425–441

    Google Scholar 

  • Valdeyron, G.; Dommée, B., Valdeyron, R. (1973): Gynodioecy: another computer simulation model. Am. Nat. 107, 454–459

    Google Scholar 

  • Willis, J.C. (1892): On gynodioecism in the Labiatae. Proc. Cambridge Philos. Soc. 7, 348–351

    Google Scholar 

  • Young, D.A. (1972): The reproductive biology of Rhus integrifolia and Rhus ovata (Anacardiaceae). Evolution 26, 406–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Spiegel-Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horovitz, A., Beiles, A. Gynodioecy as a possible populational strategy for increasing reproductive output. Theoret. Appl. Genetics 57, 11–15 (1980). https://doi.org/10.1007/BF00276003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276003

Key words

Navigation