Skip to main content
Log in

Models of the influence of predation on aspect diversity in prey populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

By considering a model incorporating behavioral changes by predators and prey evolution, we demonstrate how under certain conditions apostatic predation influences the maintenance of diversity within prey populations, and among different prey species. Further, we estimate the intrinsic “diversity” wavelength of the system when apostasy combines with other factors to lead to nonuniform distributions of prey along aspect gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. A., Clarke, B.: Evidence for apostatic selection by wild passerines. Nature 220, 501–502 (1968)

    Google Scholar 

  • Bossert, W. H.: Simulation of character displacement. Unpublished Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1963)

    Google Scholar 

  • Cain, A. J., Sheppard, P. M.: Selection in the polymorphic land snail Cepaea nemoralis. Heredity 4, 275–294 (1950)

    Google Scholar 

  • Cain, A. J., Sheppard, P. M.: Natural selection in Cepaea. Genetics 39, 89–116 (1954)

    Google Scholar 

  • Clarke, B.: Balanced polymorphism and the divergence of sympatric species. In: Taxonomy and geography (Nichols, D., ed.). Oxford: Systematics Association 1962

    Google Scholar 

  • Clarke, B.: The evidence for apostatic selection. Heredity 24, 347–352 (1969)

    Google Scholar 

  • Curio, E.: The ethology of predation. Berlin: Springer 1976

    Google Scholar 

  • Endler, J. A.: A predator's view of animal color patterns. Evol. Biol. 11, 319–364 (1978)

    Google Scholar 

  • Endler, J. A.: Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980)

    Google Scholar 

  • Hassell, M., Lawton, J., Beddington, J.: Sigmoid functional responses in invertebrate predators and parasitoids. J. Anim. Ecol. 46, 249 (1977)

    Google Scholar 

  • Holling, C. S.: Some characteristics of simple types of predation and parasitism. Canad. Entomol. 91, 385–398 (1959)

    Google Scholar 

  • Karlin, S.: Models of multifactorial inheritance: I. Multivariate formulations and basic convergence results. Theoret. Population Biology 15, 308–355 (1979a)

    Google Scholar 

  • Karlin, S.: Models of multifactorial inheritance: II. The covariance structure for a scalar phenotype under selective assortative mating and sex-dependent symmetric parental transmission. Theoret. Population Biology 15, 356–393 (1979b)

    Google Scholar 

  • Karlin, S.: Models of multifactorial inheritance: III. Calculation of covariance of relatives under selective assortative mating. Theoret. Population Biology 15, 394–423 (1979c)

    Google Scholar 

  • Karlin, S.: Models of multifactorial inheritance: IV. Asymmetric transmission for a scalar phenotype. Theoret. Population Biology 15, 424–438 (1979d)

    Google Scholar 

  • Karlin, S., McGregor, J. L.: Polymorphisms for genetic and ecological systems with weak coupling. Theoret. Population Biology 3, 210–238 (1972)

    Google Scholar 

  • Kimura, M.: A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Nat. Acad. Sci. USA 54, 731–736 (1965)

    Google Scholar 

  • Krebs, J. R., Ryan, J. C., Charnov, E. L.: Hunting by expectation or optimal foraging? A study of patch use by chickadees. Anim. Behav. 22, 953–964 (1974)

    Google Scholar 

  • Lawton, J. H., Beddington, J., Bonser, R.: Switching in invertebrate predators. In: Ecological stability (Usher, M. B., Williamson, M. H., eds.). London: Chapman and Hall 1974

    Google Scholar 

  • Lerner, I. M.: Genetic homeostasis. London: Oliver and Boyd 1954

    Google Scholar 

  • Levin, S. A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Google Scholar 

  • Levin, S. A.: Mechanisms for the generation and maintenance of diversity in ecological communities. In: The mathematical theory of the dynamics of biological populations II (Hiorns, R. W., Cooke, D., eds.), pp. 173–196. Oxford: Academic Press 1981

    Google Scholar 

  • Levins, R.: Theory of fitness in a heterogeneous environment III. The response to selection. J. Theoret. Biol. 1, 224–240 (1964)

    Google Scholar 

  • Levins, R.: Theory of fitness in a heterogeneous environment V. Optimal genetic systems. Genetics 52, 891–904 (1965)

    Google Scholar 

  • Levins, R.: Evolution in changing environments. Princeton, New Jersey: Princeton University Press 1968

    Google Scholar 

  • Lewontin, R. C.: Models of natural selection, pp. 3–16. In: Proc. Volterra Symposium (Barigozzi, C., ed.). New York: Springer 1980

    Google Scholar 

  • Lin, C. C., Segel, L. A.: Mathematics applied to deterministic models in the natural sciences. New York: Macmillan 1973

    Google Scholar 

  • Matessi, C., Scudo, F. M.: The population genetics of assortative mating based on imprinting. Theoret. Population Biology 7, 306–337 (1975)

    Google Scholar 

  • Mather, K.: Polygenic inheritance and natural selection. Biol. Rev. 18, 32–64 (1943)

    Google Scholar 

  • May, R. M.: Predators that switch. Nature 269, 103–104 (1977)

    Google Scholar 

  • Mimura, M., Murray, J. D.: On a diffusive prey-predator model which exhibits patchiness. J. Theoret. Biol. 75, 249–262 (1978)

    Google Scholar 

  • Murdoch, W. W.: Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969)

    Google Scholar 

  • Murdoch, W. W., Avery, S., Smyth, M. E. B.: Switching in predatory fish. Ecology 56, 1094–1105 (1975)

    Google Scholar 

  • Murdoch, W. W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–131 (1975)

    Google Scholar 

  • O'Donald, P.: Theoretical aspects of sexual selection. Theoret. Population Biology 12, 298–334 (1977)

    Google Scholar 

  • Othmer, H. G., Scriven, L. E.: Instability and dynamic pattern in cellular networks. J. Theoret. Biol. 32, 507–532 (1971)

    Google Scholar 

  • Popham, E. J.: The variation in the colour of certain species of Arctocorisa (Hemiptera, Corixidae) and its significance. Proc. Zool. Soc. London A 111, 135–172 (1941)

    Google Scholar 

  • Popham, E. J.: Further experimental studies on the selective action of predators. Proc. Zool. Soc. London A 112, 105–117 (1942)

    Google Scholar 

  • Rand, A. S.: Predator-prey interactions and the evolution of aspect diversity. Atas do Simposio Sobra a Biota Amazonica (Zoologia) 5, 73–83 (1967)

    Google Scholar 

  • Rausher, M. D.: Search image for leaf shape in a butterfly. Science 200, 1071–1073 (1978)

    Google Scholar 

  • Ricklefs, R.: Ecology. Concord, Massachusetts: Chiron Press 1973

    Google Scholar 

  • Ricklefs, R., O'Rourke, K.: Aspect diversity in moths: A temperate-tropical comparison. Evolution 29, 313–324 (1975)

    Google Scholar 

  • Rocklin, S. M., Oster, G. F.: Competition between phenotypes. J. Math. Biol. 3, 225–261 (1976)

    Google Scholar 

  • Rosenzweig, M.: Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Google Scholar 

  • Roughgarden, J.: Evolution of niche width. Am. Nat. 106, 683–718 (1972)

    Google Scholar 

  • Roughgarden, J., Feldman, M.: Species packing and predation pressure. Ecology 56, 489–492 (1975)

    Google Scholar 

  • Royama, T.: Factors governing the hunting behavior and selection of food by the great tit (Parus major L.). J. Anim. Ecol. 39, 619–668 (1970)

    Google Scholar 

  • Segel, L. A., Levin, S. A.: Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. In: Topics in statistical mechanics and biophysics, AIP Conf. Proc 27 (Piccirelli, R. A., ed.). New York: American Institute of Physics 1976

    Google Scholar 

  • Segel, L. A., Jackson, J.: Dissipative structure: An explanation and an ecological example. J. Theoret. Biol. 37, 545–559 (1972)

    Google Scholar 

  • Slatkin, M.: Selection and polygenic characters. Proc. Nat. Acad. Sci. USA 66, 87–93 (1970)

    Google Scholar 

  • Slatkin, M.: The evolutionary response to frequency- and density-dependent interactions. Am. Nat. 114, 384–398 (1979)

    Google Scholar 

  • Slatkin, M., Lande, R.: Niche width in a fluctuating environment—Density independent model. Am. Nat. 110, 31–55 (1976)

    Google Scholar 

  • Smith, J. N. M., Sweatman, H. P. A.: Food-searching behavior of titmice in a patchy environment. Ecology 55, 1216–1232 (1974)

    Google Scholar 

  • Stebbins, G. L., Jr.: Variation and evolution in plants. New York: Columbia University Press 1950

    Google Scholar 

  • Tinbergen, L.: The natural control of insects in pine woods I. Factors influencing the intensity of predation by songbirds. Arch. Nederland. Zool. 13, 265–343 (1960)

    Google Scholar 

  • Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. London Ser. B, 237, 37–72 (1952)

    Google Scholar 

  • Wagener, K. D.: Preferential mating: Nonrandom mating of a continuous phenotype. Theoret. Population Biology 10, 185–204 (1976)

    Google Scholar 

  • Wilson, S. R.: The correlation between relatives under the multifactorial models with assortative mating: I. The multifactorial model with assortative mating. Ann. Human Genetics 37, 289–304 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, S.A., Segel, L.A. Models of the influence of predation on aspect diversity in prey populations. J. Math. Biology 14, 253–284 (1982). https://doi.org/10.1007/BF00275393

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275393

Key words

Navigation