Skip to main content
Log in

The polymerase chain reaction: an improved method for the analysis of nucleic acids

  • Review Articles
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The polymerase chain reaction (PCR) is a method for the selective amplification of DNA or RNA segments of up to 2 kilobasepairs (kb) or more in length. Synthetic oligonucleotides flanking sequences of interest are used in repeated cycles of enzymatic primer extension in opposite and overlapping directions. The essential steps in each cycle are thermal denaturation of double-stranded target molecules, primer annealing to both strands and enzymatic synthesis of DNA. The use of the heat-stable DNA polymerase from the archebacterium Thermus aquaticus (Taq polymerase) makes the reaction amenable to automation. Since both strands of a given DNA segment are used as templates, the number of target sequences increases exponentially. The reaction is simple, fast and extremely sensitive. The DNA or RNA content of a single cell is sufficient to detect a specific sequence. This method greatly facilitates the diagnosis of mutations or sequence polymorhisms of various types in human genetics, and the detection of pathogenic components and conditions in the context of clinical research and diagnostics; it is also useful in simplifying complex analytical or synthetic protocols in basic molecular biology. This article describes the principles of the reaction and discusses the applications in different areas of biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott CM, McMahon CJ, Whitehouse DB, Povey S (1988) Prenatal diagnosis of alpha-1-antitrypsin deficiency using polymerase chain reaction. Lancet I:763–764

    Google Scholar 

  • Amselem S, Nunes V, Vidaud M, Estivill X, Wong C, Dauriol L, Vidaud D, Galibert F, Baiget M, Goossens M (1988) Determination of the seectrum of β-thalassemia genes in Spain by use of dotblot analysis of amplified β-globin DNA. Am J Hum Genet 43:95–100

    Google Scholar 

  • Ansorge W, Pepperkok R (1988) Performance of an automated system for capillary microinjection into living cells. J Biochem Biophys Methods 16:283–292

    Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    Google Scholar 

  • Beck BN, Ho SN (1988) Increased specifity of PCR-amplified products by size-fractionation of restriction enzyme-digested template genomic DNA. Nucleic Acids Res 16:9051

    Google Scholar 

  • Berg K (1986) Normal genetic liporotein variations and atherosclerosis. In: Sirtori CR, Nichols AV, Franceschini G (eds) Human apolipoprotein mutants. Plenum Press, New York, pp 31–49

    Google Scholar 

  • Bhagavati S, Ehrlich G, Kula RW, Kwok S, Sninsky J, Udani V, Poiesz BJ (1988) Detection of human T-cell lymphoma/leukemia virus type I DNA and antigen in spinal fluid and blood of patients with chronic progressive myelopathy. N Engl J Med 318:1141–1147

    Google Scholar 

  • Biebricher CK (1983) Darwinian selection of self-replicating RNA molecules. Evol Biol 16:1–52

    Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, Boom JH van, Eb AJ van der, Vogelstein B (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327:293–297

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    Google Scholar 

  • Bruun Petersen K, Koelvraa S, Bolund L, Bruun Petersen G, Koch J, Gregersen N (1988) Detection of alphal-antirypsin genotypes by analysis of amplified DNA sequences. Nucleic Acids Res 16:352

    Google Scholar 

  • Bugawan TL, Saiki RK, Levenson CH, Watson RM, Erlich HA (1988) The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing. Bio Technology 6:943–947

    Google Scholar 

  • Byrne BC, Li JJ, Sninsky J, Poiesz B (1988) Detection of HIV-1 RNA sequences by in vitro DNA amplification. Nucleic Acids Res 16: 4165

    Google Scholar 

  • Cai S-P, Zhang J-Z, Huang D-H, Wang Z-X, Kan YW (1988) A simple approach to prenatal diagnosis of β-thalassemia in a geographic area where multiple mutations occur. Blood 71:1357–1360

    Google Scholar 

  • Cariello NF, Scott JK, Kat AG, Thilly WG, Keohavong P (1988) Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am J Hum Genet 42:726–734

    Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16: 11141–11156

    Google Scholar 

  • Chan V, Chan TK, Kan YW, Todd D (1988) A novel β-thalassemia frameshift mutation (codon 14/15), detectable by direct visualization of abnormal restriction fragment in amplified genomic DNA. Blood 72:1420–1423

    Google Scholar 

  • Chehab FF, Doherty M, Cai S, Kan YW, Cooper S, Rubin EM (1987) Detection of sickle cell anemia and thalassemias. Nature 329: 293–294

    Google Scholar 

  • Chelly J, Kaplan J-C, Maire P, Gautron S, Kahn A (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature 333:858–860

    Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    Google Scholar 

  • Church GM, Kieffer-Higgins S (1988) Multiplex DNA sequencing. Science 240:185–188

    Google Scholar 

  • Connor BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB (1983) Detection of sickle cell βs allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 80:278–282

    Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246

    Google Scholar 

  • Crescenzi M, Seto M, Herzig GP, Weiss PD, Griffith RC, Korsmeyer SJ (1988) Thermostable DNA polymerase chain amplification of T(14–18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci USA 85:4869–4873

    Google Scholar 

  • Deng C (1988) A sensitive non-radioactive PCR-RFLP analysis for detecting point mutations at 12th codon of oncogene c-Ha-rss in DNAs of gastric cancer. Nucleic Acids Res 16:6231

    Google Scholar 

  • Denton PH, Fowlkes DM, Lord ST, Reisner HM (1988) Hemophilia-B Durham — a mutation in the first EGF-like domain of factor-IX that is characterized by polymerase chain reaction. Blood 71: 1407–1411

    Google Scholar 

  • Diaz-Chico JC, Yang K, Yang K, Efremov DG, Stoming TA, Huisman THJ (1988) The detection of β-globin gene mutations in β-thalassemia using oligonucleotide probes and amplified DNA. Biochim Biophys Acta 949:43–48

    Google Scholar 

  • DiLella AG, Huang W-M, Woo SLC (1988) Screening for phenylketonuria mutations by DNA amplification with polymerase chain reaction. Lancet I:497–499

    Google Scholar 

  • Drake JW, Baltz RH (1976) The biochemistry of mutagenesis. Annu Rev Biochem 45:11–37

    Google Scholar 

  • Duggan DB, Ehrlich GD, Davey FP, Kwok S, Sninsky J, Goldberg J, Baltrucki L, Poiesz BJ (1988) HTLV-I-induced lymphoma mimicking Hodgkin's disease. Diagnosis by polymerase chain reaction amplification of specific HTLV-I sequences in tumor DNA. Blood 71:1027–1032

    Google Scholar 

  • Dunning AM, Talmud P, Humphries SE (1988) Errors in the polymerase chain reaction. Nucleic Acids Res 16:10393

    Google Scholar 

  • Embury SH, Scharf SJ, Saiki RK, Gholson MA, Arnheim N, Erlich HA (1987) Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. N Engl J Med 316: 656–661

    Google Scholar 

  • Engelke DR, Hoener PA, Collins FS (1988) Direct sequencing of enzymatically amplified human genomic DNA. Proc Natl Acad Sci USA 85:544–548

    Google Scholar 

  • Farr CJ, Saiki RK, Erlich HA, McCormick, F, Marshall CJ (1988) Analysis of ras gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85:1629–1633

    Google Scholar 

  • Farzadegan H, Polis MA, Wolinsky SM, Rinaldo CR, Sninsky JJ, Kwok S, Griffith RL, Kaslow RA, Phair JP, Polk F, Saah AJ (1988) Loss human immunodeficiency virus type I (HIV-1) antibodies with evidence of viral infection in asymptomatic homosexual men. Ann Intern Med 108:785–790

    Google Scholar 

  • Feldman GL, Williamson R, Beaudet AL, O'Brien WE (1988) Prenatal diagnosis of cystic fibrosis by DNA amplification for detection of KM-19 polymorphism. Lancet II:102

    Google Scholar 

  • Foulkes NS, Pandolfi de Rinaldis PP, Macdonnel J, Cross NCP, Luzzatto l (1988) Polymerase chain reaction automated at low cost. Nucleic Acids Res 16:5687–5688

    Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of fulllength cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    Google Scholar 

  • Gennari K, Wermuth B, Muellener D, Ehrig T, Wartburg J-P von (1988) Genotyping of human class I alcohol dehydrogenase. Analysis of enzymatically amplified DNA with allele-specific oligonucleotides. FEBS Lett 228:305–309

    Google Scholar 

  • Gish G, Eckstein F (1988) DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240:1520–1522

    Google Scholar 

  • Gu XF, Elion J, Ouagued M, Clauser E, Assan P, Krishnamoorthy R (1988) A simple strategy to amplify specifically the HLA-DQß gene region with genomic DNA as template. FEBS Lett 236:23–26

    Google Scholar 

  • Gusella JF (1986) DNA polymorphism and human disease. Annu Rev Biochem 55:831–854

    Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85:7652–7656

    Google Scholar 

  • Haqqi TM, Sarkar G, David CS, Sommer SS (1988) Specific amplification with PCR of a refractory segment of genomic DNA. Nucleic Acids Res 16:11844

    Google Scholar 

  • Harbarth P, Vosberg H-P (1988) Enzymatic amplification of myosin heavy-chain mRNA sequences in vitro. DNA 7:297–306

    Google Scholar 

  • Hayes W (1974) The genetics of bacteria and their viruses, 2nd edn. Blackwell, Oxford, pp 193–199

    Google Scholar 

  • Higuchi R, Beroldingen CH von, Sensabaugh GF, Erlich HA (1988a) DNA typing from single hairs. Nature 332:543–546

    Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988b) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 15: 7351–7367

    Google Scholar 

  • Howley PM (1987) The role of papilloma virus in human cancer. In: DeVita Jr VT, Hellman SS, Rosenberg SA (eds) Important advances in oncology. Lippincott, Philadelphia, pp 55–73

    Google Scholar 

  • Impraim CC, Saiki RK, Erlich HA, Teplitz RL (1987) Analysis of DNA extracted from formalin-fixed, paraffin-embedded tissues by enzymatic amplification and hybridization with sequence-specific oligonucleotides. Biochem Biophys Res Commun 142:710–716

    Google Scholar 

  • Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction amplified DNA. Proc Natl Acad Sci USA 85:9436–9440

    Google Scholar 

  • Janssen JWG, Lyons J, Steenvorden ACM, Seliger H, Bartram CR (1987a) Concurrent mutations in two different ras genes in acute myelocytic leukemias. Nucleic Acid Res 15:5669–5680

    Google Scholar 

  • Janssen JWG, Steenvorden ACM, Lyons J, Anger B, Böhlke JU, Bos JL, Seliger H, Bartram CR (1987b) Ras gene mutations in acute and chronic myelotic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84:9228–9232

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73

    Google Scholar 

  • Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16:10953–10971

    Google Scholar 

  • Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J (1984) The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13

    Google Scholar 

  • Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5698–5702

    Google Scholar 

  • Keohavong P, Kat AG, Cariello NF, Thilly WG (1988a) DNA amplification in vitro using T4 DNA polymerase. DNA 7:63–70

    Google Scholar 

  • Keohavong P, Wang CC, Cha RS, Thilly WG (1988b) Enzymatic amplification and characterization of large DNA fragments from genomic DNA. Gene 71:221–216

    Google Scholar 

  • Kim H-S, Smithies O (1988) Recombinant fragment assay for gene targetting based on the polymerase chain reaction. Nucleic Acids Res 16:8887–8903

    Google Scholar 

  • Knoth K, Roberds S, Poteet C, Tamkun M (1988) Highly degenerate, inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction. Nucleic Acids Res 16:10932

    Google Scholar 

  • Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517

    Google Scholar 

  • Kogan SC, Doherty M, Gitschier J (1987) An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. N Engl J Med 317:985–990

    Google Scholar 

  • Kozma SC, Bogaard ME, Buser K, Saurer SM, Bos JL, Groner B, Hynes NE (1987) The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB231. Nucleic Acids Res 15:5963–5971

    Google Scholar 

  • Kuchta RD, Benkovic P, Benkovic SJ (1988) Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27:6716–6725

    Google Scholar 

  • Kulozik AE, Lyons J, Kohne E, Seliger H, Bartram CR, Kleihauer E (1988) Rapid and non-radioactive prenatal diagnosis of β-thalassemia and sickle cell disease: application of the polymerase chain reaction (PCR). Br J Haematol 70:455–458

    Google Scholar 

  • Kwok S, Mack DH, Mullis KB, Poiesz B, Ehrlich G, Blair D, Friedman-Kien A, Sninsky JJ (1987) Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J Virol 61:1690–1694

    Google Scholar 

  • Lai-Goldman M, Lai E, Grody WW (1988) Detection of human immunodeficiency virus (HIV) infection in formalin fixed, paraffin embedded tissues by DNA amplification. Nucleic Acids Res 16: 8191

    Google Scholar 

  • Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics — molecular techniques and automation. Science 242:229–237

    Google Scholar 

  • Larzul D, Guigue F, Sninsky JJ, Mack DH, Brechot C, Guesdon JL (1988) Defection of hepatitis B virus sequences in serum by using in vitro enzymatic amplification. J Virol Methods 20:227–237

    Google Scholar 

  • Layton DM, Mufti GJ, Lyons J, Janssen JWG, Bartram CR (1988) Loss of ras oncogene mutation in a myelodysplastic syndrome after low-dose cytarabine therapy. Lancet I:1468–1469

    Google Scholar 

  • Lee CC, Wu X, Gibbs RA, Cook RG, Muzny DM, Caskey CT (1988) Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science 239:1288–1291

    Google Scholar 

  • Lee M-S, Chang K-S, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA (1987) Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science 237:175–178

    Google Scholar 

  • Levinson B, Janco R, Philipps III J, Gitschier J (1987) A novel missense mutation in the factor VIII gene identified by analysis of amplified hemophilia DNA sequences. Nucleic Acids Res 15: 9797–9805

    Google Scholar 

  • Li H, Gyllensten UB, Cui X, Saiki RK, Erlich HA, Arnheim N (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335:414–417

    Google Scholar 

  • Liang W, Johnson JP (1988) Rapid plasmid insert amplification with polymerase chain reaction. Nucleic Acids Res 16:3579

    Google Scholar 

  • Lichter P, Cremer T, Manuelidis L, Ward DC (1988) Delineation of individual chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234

    Google Scholar 

  • Lizardi PM, Guerra CE, Lomeli H, Tussie-Luna I, Kramer FR (1988) Exponential amplification of recombinant-RNA hybridization probes. Bio Technology 6:1197–1202

    Google Scholar 

  • Lo Y-MD, Mehal WZ, Fleming KA (1988a) Rapid production of vector-free biotinylated probes using the polymerase chain reaction. Nucleic Acids Res 16:8719

    Google Scholar 

  • Lo Y-MD, Mehal WZ, Fleming KA (1988b) False-positive results and the polymerase chain reaction. Lancet II:679

    Google Scholar 

  • Lyons J, Janssen JWG, Bartram C, Layton M, Mufti GJ (1988) Mutation of Ki-ras and N-ras oncogenes in myelodysplastic syndroems. Blood 71:1707–1712

    Google Scholar 

  • Marshall CJ (1986) The ras gene family. In: Kahn P, Graf T (eds) Oncogenes and growth control. Springer, Berlin Heidelberg New York, pp 192–199

    Google Scholar 

  • Maxam A, Gilbert W (1980) Sequencing end-labelled DNA with base specific chemical cleavage. Methods Enzymol 65:499–560

    Google Scholar 

  • McConlogue L, Brow MAD, Innis MA (1988) Structure-independent DNA amplification by PCR using 7-deaza-2′-deoxyguanosine. Nucleic Acids Res 16:9869

    Google Scholar 

  • McMahon G, Davis E, Wogan GN (1987) Characterization of c-Ki-ras oncogene alleles by direct sequencing of enzymatically amplified DNA from carcinogen-induced tumors. Proc Natl Acad Sci USA 84:4974–4978

    Google Scholar 

  • Mitchell GA, Brody LC, Looney J, Steel G, Suchanek M, Dowling C, Kaloustian VD, Kaiser-Kupfer M, Valle D (1988) An initiator codon mutation in ornithine-δ-aminotransferase causing gyrate atrophy of the choroid and retina. J Clin Invest 81:630–633

    Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    Google Scholar 

  • Murakawa GJ, Zaia JA, Spallone PA, Stephens DA, Kaplan BE, Wallace RB, Rossi JJ (1988) Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA 7:287–295

    Google Scholar 

  • Myers RM, Maniatis T (1986) Recent advances in the development of methods for detecting single-base substitutions associated with human genetic diseases. Cold Spring Harbor Symp Quant Biol 51:275–284

    Google Scholar 

  • Myers RM, Larin Z, Maniatis T (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230:1242–1246

    Google Scholar 

  • Nakamaye KL, Gish G, Eckstein F, Vosberg H-P (1988) Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside α-thiotriphosphates. Nucleic Acids Res 16:9947–9959

    Google Scholar 

  • Newton CR, Kalsheker N, Graham A, Powell S, Gammack A, Riley J, Markham AF (1988) Diagnosis of α1 deficiency by enzymatic amplification of human geneomic DNA and direct sequencing of polymerase chain reaction products. Nucleic Acids Res 16:8233–8243

    Google Scholar 

  • Noonan KE, Roninson IB (1988) mRNA phenotyping by enzymatic amplification of randomly primed cDNA. Nucleic Acids Res 16: 10366

    Google Scholar 

  • Oste C (1988) Polymerase chain reaction. Bio Techniques 6:162–167

    Google Scholar 

  • Ou C-Y, Kwok S, Mitchell SW, Mack DH, Sninsky JJ, Krebs JW, Feorino P, Warfield D, Schochetman G (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239:295–297

    Google Scholar 

  • Pääbo S, Wilson AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature 334:387–388

    Google Scholar 

  • Poustka A, Pohl TM, Barlow DP, Frischauf A-M, Lehrach H (1987) Construction and use of human chromosome jumping libraries from NotI-digested DNA. Nature 325:353–355

    Google Scholar 

  • Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840

    Google Scholar 

  • Rappolee DA, Mark D, Banda MJ, Werb Z (1988) Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–712

    Google Scholar 

  • Rochlitz CF, Scott GK, Dodson JM, Benz CC (1988) Use of the polymerase chain reaction technique to create base-specific ras oncogene mutations. DNA 7:515–519

    Google Scholar 

  • Rollo F, Amici A, Salvi R (1988) A simple and low cost DNA amplifier. Nucleic Acids Res 16:3105

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele specific oligonucleotide probes. Nature 324:163–166

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988a) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–494

    Google Scholar 

  • Saiki RK, Chang CA, Levenson CH, Warren TC, Boehm CD, Kazazian HH, Erlich HA (1988b) Diagnosis of sickle-cell anemia and β-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med 319:537–541

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sarkar G, Sommer SS (1988) RNA amplifications with transcript sequencing (RAWTS). Nucleic Acids Res 16:5197

    Google Scholar 

  • Scharf SJ, Horn GT, Erlich HA (1986) Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233:1076–1078

    Google Scholar 

  • Scharf SS, Friedmann A, Brautbar C, Szafer F, Steinman L, Horn G, Gyllensten U, Erlich HA (1988) HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci USA 85: 3504–3508

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosomesized DNAs by pulsed field gradient gel electrophoresis. Cell 37: 67–75

    Google Scholar 

  • Shibata DK, Arnheim N, Martin WJ (1988) Detection of human papilloma virus in paraffin-embedded tissue using the polymerase chain reaction. J Exp Med 167:225–230

    Google Scholar 

  • Simpson D, Crosby RM, Skopek TR (1988) A method for specific cloning and sequencing of human HPRT cDNA for mutation analysis. Biochem Biophys Res Commun 151:487–492

    Google Scholar 

  • Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL (1988) KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 16:7773–7782

    Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317:230–234

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Stoflet ES, Koeberl DD, Sarkar G, Sommer SS (1988) Genomic amplification with transcript sequencing. Science 239:491–494

    Google Scholar 

  • Syvänen AC, Bengtström M, Tenhunen J, Söderlund H (1988) Quantification of polymerase chain reaction products by affinity-based hybrid collection. Nucleic Acids Res 16:11327–11338

    Google Scholar 

  • Takeshita S, Tezuka K, Takahashi M, Honkawa H, Matsuo A, Matsuishi T, Hashimoto-Goto T (1988) Tandem gene amplification in vitro for rapid and efficient expression in animal cells. Gene 71:9–18

    Google Scholar 

  • Teynor-Maclachlan A (1988) Versuche zur Optimierung der PCR-Methode. Thesis, University of Heidelberg

  • Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013

    Google Scholar 

  • Todd JA, Bell JI, McDevitt HO (1987) HLA-DQß gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329:599–604

    Google Scholar 

  • Triglia T, Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186

    Google Scholar 

  • Veer LJ van't, Hermens R, Berg-Bakker LAM van den, Cheng NC, Fleuren G-J, Bos JL, Cleton FJ, Schrier PI (1988) ras Oncogene activation in human ovarian carcinoma. Oncogene 2:157–165

    Google Scholar 

  • Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237:415–417

    Google Scholar 

  • Verlaan-de Vries M, Bogaard ME, Elst H van den, Boom J van, Eb A van der, Bos JL (1986) A dot-blot screening procedure for mutated ras oncogenes using synthetic oligonucleotides. Gene 50: 313–320

    Google Scholar 

  • Vigilant L, Stoneking M, Wilson AC (1988) Conformational mutation in human mtDNA detected by direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 16:5945–5955

    Google Scholar 

  • Weisgraber KH, Newhouse YM, Mahley RW (1988) Apolipoprotein E genotyping using the polymerase chain reaction and allele-specific oligonucleotide probes. Biochem Biophys Res Commun 157: 1212–1217

    Google Scholar 

  • White R, Caskey CT (1988) The human as an experimental system in molecular genetics. Science 240:1483–1488

    Google Scholar 

  • Williams C, Williamson R, Coutelle C, Loeffler F, Smith J, Ivinson A (1988) Same-day, first-trimester antenatal diagnosis for cystic fibrosis by gene amplification. Lancet II:102–103

    Google Scholar 

  • Wong C, Dowling CE, Saiki RK, Higuchi RG, Erlich HA, Kazazian Jr HH (1987) Characterization of β-thalassemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330:384–386

    Google Scholar 

  • Wrischnik LA, Higuchi RG, Stoneking M, Erlich HA, Arnheim N, Wilson AC (1987) Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 15:529–542

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vosberg, HP. The polymerase chain reaction: an improved method for the analysis of nucleic acids. Hum Genet 83, 1–15 (1989). https://doi.org/10.1007/BF00274139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00274139

Keywords

Navigation