Skip to main content
Log in

Escherichia coli DNA polymerase II is homologous to α-like DNA polymerases

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The Escherichia coli polB gene encodes DNA polymerase II and is regulated by the SOS system. We sequenced a 4081 nucleotide segment of the E. coli chromosome that contains the polB gene and its flanking regions. DNA polymerase II, as deduced from the DNA sequence, consists of 782 amino acids, has a molecular weight of 89917, and is structurally homologous to α-like DNA polymerases, which include eukaryotic replicative DNA polymerases. Comparison of the sequences of the α-like DNA polymerases including E. coli DNA polymerase II showed that there were nine highly conserved regions, and we constructed an unrooted phylogenetic tree of the DNA polymerases based on the differences in these conserved regions. The DNA polymerases of herpes groups viruses and the DNA polymerases that use protein priming for the initiation of replication form two separate subfamilies that occupy opposite locations in the tree. Other DNA polymerases, including E. coli DNA polymerase II, human DNA polymerase α, and yeast DNA polymerase I, occupy the central regions between the two subfamilies and they are rather distantly related to each other. The transcription initiation site of polB was identified by analysis of in vivo transcripts, and the promoter was assigned upstream of the polB coding region. The recognition sequence of the LexA repressor (SOS box) was identified by a footprinting experiment. It overlaps the −35 sequence of the polB promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos P (1988) A sequence motif in many polymerases. Nucleic Acids Res 16:9909–9916

    Google Scholar 

  • Argos P, Tucker AD, Philipson L (1986) Primary structural relationships may reflect similar DNA replication strategies. Virology 149:208–216

    Google Scholar 

  • Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557

    Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Séguin C, Tuffnell PS, Barrell BG (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211

    Google Scholar 

  • Bernad A, Zaballos A, Salas M, Blanco L (1987) Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J 6:4219–4225

    Google Scholar 

  • Bernad A, Blanco L, Lázaro JM, Martin G, Salas M (1989) A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228

    Google Scholar 

  • Bernad A, Lázaro JM, Salas M, Blanco L (1990) The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in a-like DNA polymerases is required by phage Φ29 DNA polymerase for protein-primed initiation and polymerization. Proc Natl Acad Sci USA 87:4610–4614

    Google Scholar 

  • Binns MM, Stenzler L, Tomley FM, Campbell J, Boursnell MEG (1987) Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. Nucleic Acids Res 15:6563–6573

    Google Scholar 

  • Bonner CA, Randall SK, Rayssiguier C, Radman M, Eritja R, Kaplan BE, McEntee K, Goodman MF (1988) Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem 263:18946–18952

    Google Scholar 

  • Boulet A, Simon M, Faye G, Bauer GA, Burgers PMJ (1989) Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J 8:1849–1854

    Google Scholar 

  • Brent R, Ptashne M (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78:4204–4208

    Google Scholar 

  • Campbell JL, Soll L, Richardson CC (1972) Isolation and partial characterization of a mutant Escherichia coli deficient in DNA polymerase II. Proc Natl Acad Sci USA 69:2090–2094

    Google Scholar 

  • Chen H, Bryan SK, Moses RE (1989) Cloning the polB gene of Escherichia coli and identification of its product. J Biol Chem 264:20591–20595

    Google Scholar 

  • Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816

    Google Scholar 

  • Dekker BMM, van Ormondt H (1984) The nucleotide sequence of fragment HindIII-C of human adenovirus type 5 DNA (map positions 17.1–31.7). Gene 27:115–120

    Google Scholar 

  • Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz TA (1988) Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science 240:199–201

    Google Scholar 

  • Earl PL, Jones EV, Moss B (1986) Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequene of the vaccinia virus DNA polymerase gene. Proc Natl Acad Sci USA 83:3659–3663

    Google Scholar 

  • Ebina Y, Takahara Y, Kishi F, Nakazawa A (1983) LexA protein is a repressor of the colicin E1 gene. J Biol Chem 258:13258–13261

    Google Scholar 

  • Engler JA, Hoppe MS, van Bree MP (1983) The nucleotide sequence of the genes encoded in early region 2b of human adenovirus type 7. Gene 21:145–159

    Google Scholar 

  • Freemont PS, Friedman JM, Beese LS, Sanderson MR, Steitz TA (1988) Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci USA 85:8924–8928

    Google Scholar 

  • Gibbs JS, Chiou HC, Bastow KF, Cheng Y-C, Coen DM (1988) Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci USA 85:6672–6676

    Google Scholar 

  • Gibbs JS, Chien HC, Hall JD, Mount DW, Retondo MJ, Weller SK, Coen DM (1985) Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc Natl Acad Sci USA 82:7969–7973

    Google Scholar 

  • Gingeras TR, Sciaky D, Gelinas RE, Bing-Dong J, Yen CE, Kelly MM, Bullock PA, Parsons BL, O'Neill KE, Roberts RJ (1982) Nucleotide sequence from the adenovirus-2 genome. J Biol Chem 257:13475–13491

    Google Scholar 

  • Gross J, Gross M (1969) Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature 224:1166–1168

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Hirota Y, Gefter M, Mindich L (1972) A mutant of Escherichia coli defective in DNA polymerase II activity. Proc Natl Acad Sci USA 69:3238–3242

    Google Scholar 

  • Hood LE, Wilson JH, Wood WE (1975) Molecular biology of eucaryotic cells: a problems approach. W.A. Benjamin, Menlo Park, California

    Google Scholar 

  • Huberman JA (1981) New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase α. Cell 23:647–648

    Google Scholar 

  • Inokuchi Y, Hirashima A (1987) Interference with viral infection by defective RNA replicase. J Virol 61:3946–3949

    Google Scholar 

  • Iwasaki H, Nakata A, Walker GC, Shinagawa H (1990) The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol 172:6268–6273

    Google Scholar 

  • Joyce CM, Grindley NDF (1984) Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol 158:636–643

    Google Scholar 

  • Joyce CM, Kelley WS, Grindley NDF (1982) Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I. J Biol Chem 257:1958–1964

    Google Scholar 

  • Jung G, Leavitt MC, Hsieh J-C, Ito J (1987) Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc Natl Acad Sci USA 84:8287–8291

    Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachromosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218:523–530

    Google Scholar 

  • Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77:2819–2823

    Google Scholar 

  • Kornberg A (1980) DNA replication. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987) Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J Virol 61:125–133

    Google Scholar 

  • Larder BA, Kemp SD, Darby G (1987) Related functional domains in virus DNA polymerases. EMBO 16:169–175

    Google Scholar 

  • Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH (1989) Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 264:6427–6437

    Google Scholar 

  • Leavitt MC, Ito J (1989) T5 DNA polymerase: structural-functional relationships to other DNA polymerases. Proc Natl Acad Sci USA 86:4465–4469

    Google Scholar 

  • Lee N, Gielow W, Martin R, Hamilton E, Fowler A (1986) The organization of the araBAD operon of Escherichia coli. Gene 47:231–244

    Google Scholar 

  • Lopez P, Martinez S, Diaz A, Espinosa M, Lacks SA (1989) Characterization of the polA gene of Streptococcus pneumoniae and comparison of the DNA polymerase I it encodes to homologous enzymes from Escherichia coli an phage T7. J Biol Chem 264:4255–4263

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • McHenry CS (1988) DNA polymerase III hotoenzyme of Escherichia coli. Annu Rev Biochem 57:519–550

    Google Scholar 

  • Morrison A, Christensen RB, Alley J, Beck AK, Bernstine EG, Lemontt JF, Lawrence CW (1989) REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol 171:5659–5667

    Google Scholar 

  • Nishikawa K, Nakashima H, Kanehisa M, Ooi T (1987) Detection of weak sequence homology of proteins for tertiary structure prediction. Protein Seq Data Anal 1:107–116

    Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985a) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766

    Google Scholar 

  • Ollis DL, Kline C, Steitz TA (1985b) Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. Nature 313:818–819

    Google Scholar 

  • Paillard M, Sederoff RR, Levings CS III (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4:1125–1128

    Google Scholar 

  • Pizzagalli A, Valsasnini P, Plevani P, Lucchini G (1988) DNA polymerse I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc Natl Acad Sci USA 85:3772–3776

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sakaguchi K (1990) Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54:66–74

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Seto A, Ihara S, Kohtsuki S, Ooi T, Sakakibara S (1988) Peptide and protein databanks in Japan. In: Lesk AM (ed) Computational molecular biology. Oxford University Press, Oxford, pp 27–37

    Google Scholar 

  • Shu L, Hong JS, Wei Y-F, Engler JA (1986) Nucleotide sequence of the genes encoded in early region 2b of human adenovirus type 12. Gene 46:187–195

    Google Scholar 

  • Spicer EK, Rush J, Fung C, Reha-Krantz LJ, Karam JD, Konigsberg WH (1988) Primary structure of T4 DNA polymerase: evolutionary relatedness to eucaryotic and other procaryotic DNA polymerases. J Biol Chem 263:7478–7486

    Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030

    Google Scholar 

  • Tomalski MD, Wu J, Miller LK (1988) The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600

    Google Scholar 

  • Tomasiewicz HG, McHenry CS (1987) Sequence analysis of the Escherichia coli dnaE gene. J Bacteriol 169:5735–5744

    Google Scholar 

  • Treisman R, Proudfoot NJ, Shander M, Maniatis T (1982) A single-base change at a splice site in a β0-thalassemic gene causes abnormal RNA splicing. Cell 29:903–911

    Google Scholar 

  • Tsurumi T, Maeno K, Nishiyama Y (1987) Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 2 and comparison with the type 1 counterpart. Gene 52:129–137

    Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Google Scholar 

  • Wertman KF, Mount DW (1985) Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J Bacteriol 163:376–384

    Google Scholar 

  • Wong SW, Wahl AF, Yuan P-M, Arai N, Pearson BE, Arai K, Korn D, Hunkapiller MW, Wang TS-F (1988) Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J 7:37–47

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage Φ29. Gene 17:322–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Sekiguchi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, H., Ishino, Y., Toh, H. et al. Escherichia coli DNA polymerase II is homologous to α-like DNA polymerases. Mol Gen Genet 226, 24–33 (1991). https://doi.org/10.1007/BF00273583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00273583

Key words

Navigation