Skip to main content
Log in

Pressure field, vorticity field, and coherent structures in two-dimensional incompressible turbulent flows

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Geometrical arguments lead to the definition of two education criteria for coherent structures in two-dimensional incompressible turbulent flows. These criteria involve the pressure or the vorticity field and are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babiano, A., Basdevant, C., Leroy, P., and Sadourny, R. (1987). Single particle dispersion, Lagrangian structure function and Lagrangian energy spectrum in two-dimensional incompressible turbulence. J. Mar. Res., 45, 107–131.

    Google Scholar 

  • Batchelor, G.K. (1969). Computation of energy spectrum in two-dimensional turbulence. Phys. Fluids Suppl., 12, II233-II239.

    Google Scholar 

  • Brachet, M.E. (1990). Géométrie des structures à petites échelles dans le vortex de Taylor-Green. C. R. Acad. Sci. Paris Ser. II, 311, 775–780.

    Google Scholar 

  • Brachet, M.E., Meneguzzi, M., Politano, H., and Sulem, P.L. (1988). The dynamics of freely decaying two-dimensional turbulence. J. Fluid Mech., 194, 333–349.

    Google Scholar 

  • Chong, M.S., Perry, A.E., and Cantwell, B.J. (1990). A general classification of three-dimensional flow fields. Phys. Fluids A, 2, 765–777.

    Google Scholar 

  • Couder, Y., and Basdevant, C. (1986). Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech., 173, 225–251.

    Google Scholar 

  • Courant, R., and Hilbert, D. (1962). Methods of Mathematical Physics, Vol. II. Interscience, New York.

    Google Scholar 

  • Dresselhaus, E., and Tabor, M. (1989). The persistence of strain in dynamicals systems. J. Phys. A, 22, 971–984.

    Google Scholar 

  • Ghil, M., Shkoller, S., and Yangarber, V. (1977). A balanced diagnostic system compatible with a barotropic prognostic model. Monthly Weather Rev., 105, 1223–1237.

    Google Scholar 

  • Hopfinger, E.J., Browand, F.K., and Gagne, Y. (1982). Turbulence and waves in a rotating tank. J. Fluid Mech., 125, 505–534.

    Google Scholar 

  • Hussain, A.K.M.F. (1986). Coherent structures and turbulence. J. Fluid Mech., 173, 303–356.

    Google Scholar 

  • Kraichnan, R.H. (1967). Inertial ranges in two-dimensional turbulence. Phys. Fluids, 9, 1937–1943.

    Google Scholar 

  • Larchevêque, M. (1990a). Analytical studies of pressure fluctuation and Lagrangian acceleration fields in two-dimensional turbulent flows. European J. Mech. B, 9, 109–128.

    Google Scholar 

  • Larchevêque, M. (1990b). Equation de Monge-Ampère et écoulements incompressibles bidimensionnels. C. R. Acad. Sci. Paris Ser. II, 311, 33–36.

    Google Scholar 

  • Leith, C.E. (1968). Diffusion approximation for two-dimensional turbulence. Phys. Fluids, 11, 671–673.

    Google Scholar 

  • McWilliams, J.C. (1984). Isolated coherent structures in turbulent flows. J. Fluid Mech., 146, 21–43.

    Google Scholar 

  • McWilliams, J.C. (1988). Geostrophic Vortices. Lecture Notes for the International School of Physics “Enrico Fermi,” Varenna.

  • Melander, M.V., Zabusky, N.J., and McWilliams, J.C. (1988). Symmetric vortex merger in two dimensions; causes and conditions. J. Fluid Mech., 195, 303–340.

    Google Scholar 

  • Métais, O., and Lesieur M. (1992). Spectral large-eddy simulation of isotropic and stably-stratified turbulence, J. Fluid Mech., 239, 57–194.

    Google Scholar 

  • Monin, A.S., and Yaglom, A.M. (1975) Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, MA.

    Google Scholar 

  • Sommeria, J., and Moreau, R. (1982). Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech., 118, 507–518.

    Google Scholar 

  • Taylor, G.I. (1935). Statistical theory of turbulence, IV: Diffusion in a turbulent air stream. Proc. Roy. Soc. London Ser. A, 151, 465–478.

    Google Scholar 

  • Taylor, G.I. (1936). Statistical theory of turbulence, V: Effects of turbulence on the boundary layer. Proc. Roy. Soc. London Ser. A, 156, 307–317.

    Google Scholar 

  • Terry, P.W., Newman, D.E., and Mattor, N. (1992). Coherence of intense localized vorticity in decaying two-dimensional Navier-Stokes turbulence. Phys. Fluids A, 4, 927–937.

    Google Scholar 

  • Weiss, J. (1981). The Dynamics of Enstrophy Transfer in Two-Dimensional Hydrodynamics. Report LJI-TN-121, La Jolla Institute, San Diego, CA.

    Google Scholar 

  • Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D, 48, 273–294.

    Google Scholar 

  • Wray, A.A., and Hunt, J.C.R. (1990). Algorithms for classification of turbulent structures. In: Topological Fluid Mechanics (H.K. Moffatt and A.Y Tsinober, eds.). Cambridge University Press, Cambridge, pp. 95–104.

    Google Scholar 

  • Zabusky, N.J., and Deem, G.S. (1971). Dynamical evolution of two-dimensional unstable shear flows. J. Fluid Mech., 47, 353–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Mark N. Glauser, Jean-Paul Bonnet, and Thomas B. Gatski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larchevêque, M. Pressure field, vorticity field, and coherent structures in two-dimensional incompressible turbulent flows. Theoret. Comput. Fluid Dynamics 5, 215–222 (1993). https://doi.org/10.1007/BF00271659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271659

Keywords

Navigation