Skip to main content
Log in

Partial hypoxanthine-guanine phosphoribosyl transferase deficiency with full expression of the Lesch-Nyhan syndrome

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A patient with the full clinical expression of the classical Lesch-Nyhan syndrome is presented with a residual hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity of 5–10% in erythrocyte lysate and about 30% in fibroblast lysate. The activities of other erythrocyte enzymes of purine metabolism were typical for a classical Lesch-Nyhan patient. The effects of allopurinol therapy on the excretion of urinary purine metabolites were studied by a newly developed isotachophoretic technique.

The unusually high residual activity of HGPRT in erythrodytes and fibroblasts of the patient enabled the enzymologic characterization of the mutant enzyme: in fibroblasts the affinities for the substrates hypoxanthine and guanine were normal. However, there was an increased apparent K m for phosphoribosylpyrophosphate (PRPP), a complete absence of product inhibition by IMP and GMP, and a decreased heat stability. Addition of PRPP did not stabilize the mutant enzyme. In addition to the altered properties of the fibroblast enzyme, the K m of the erythrocyte enzyme for hypoxanthine was also increased.

Immunoprecipitation experiments revealed the presence of an approximately normal amount of material cross-reacting with anti-human HGPRT antiserum. However, it appeared that this cross-reacting material had a decreased stability. When intact erythrocytes were incubated with radiolabeled purine bases, no formation of IMP or GMP could be detected, despite the relatively high residual activity of HGPRT in the hemolysate. The results fit the following hypothesis: as a consequence of a structural mutation affecting the PRPP-site of the enzyme and a decreased heat stability, the activity of the mutant enzyme under in vivo conditions is virtually zero.

In the erythrocytes of the patient's mother a normal HGPRT-activity was found. However, the activity in her fibroblasts was lower than normal, while a decreased heat stability and an intermediate behavior towards IMP could be shown.

Hair root analysis of several members of the patient's family confirmed the heterozygosity of the mother, whereas no other heterozygotes could be detected. The family anamnesis did not show other cases of Lesch-Nyhan syndrome. These findings were taken as evidence that the patient described in this paper might represent a mutation orginating from the gametes in either of the maternal grandparents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison AC, Watts RWE, Hovi T, Webster ADB (1975) Immunological observations on patients with Lesch-Nyhan syndrome, and on the role of de novo purine synthesis in lymphocyte transformation. Lancet II: 1179–1182

    Google Scholar 

  • Arnold WJ, Meade JC, Kelley WN (1972) Hypoxanthine-guanine phosphoribosyl transferase: characteristics of the mutant enzyme in erythrocytes from patients with the Lesch-Nyhan syndrome. J Clin Invest 51:1805–1812

    Google Scholar 

  • Bakay B, Nyhan WL (1972) Electrophoretic properties of hypoxanthineguanine phosphoribosyl transferase in erythrocytes of subjects with Lesch-Nyhan syndrome. Biochem Genet 6:139–146

    Google Scholar 

  • Beutler E, West C, Blume KG (1976) The removal of leukocytes and platelets from whole blood. J Lab Clin Invest 88:328–333

    Google Scholar 

  • De Bruyn CHMM, Oei TL, Ter Haar BGA (1974) Studies on hair roots for carrier detection in hypoxanthine-guanine phosphoribosyl transferase deficiency. Clin Genet 5:449–456

    Google Scholar 

  • De Bruyn CHMM (1976) Hypoxanthine-guanine phosphoribosyl transferase deficiency. Hum Genet 31:127–150

    Google Scholar 

  • De Bruyn CHMM, Oei TL (1977a) Incorporation of purine bases by intact red blood cells. Adv Exp Med Biol 76B:139–150

    Google Scholar 

  • De Bruyn CHMM, Oei TL (1977b) Purine phosphoribosyl transferase in human erythrocyte ghosts. Adv Exp Med Biol 76A:139–152

    Google Scholar 

  • Dancis J, Yip LC, Cox RP, Piomelli S, Balis ME (1973) Disparate enzyme activity in erythrocytes and leukocytes> A variant of hypoxanthine phosphoribosyl transferase deficiency with an unstable enzyme. J Clin Invest 52:2068–2074

    Google Scholar 

  • Emmerson BT, Thompson CJ, Wallace DC (1972) Partial deficiency of hypoxanthine-guanine phosphoribosyl transferase: Intermediate enzyme deficiency in heterozygote red cells. Ann Intern Med 76: 285–287

    Google Scholar 

  • Emmerson BT, Thompson L (1973) The spectrum of hypoxanthineguanine phosphoribosyl transferase deficiency. Q J Med 42:423–440

    Google Scholar 

  • Etienne J-C, Champanie J-P, Pascalis G, Gougeon J (1973) Encéphalopathie hypèruricosurique avec auto-mutilations. Rev Rhum Mal Osteoartic 40:265–270

    Google Scholar 

  • Fujimoto WY, Scegmiller JE (1970) Hypoxanthine-guanine phosphoribosyl transferase deficiency: activity in normal mutant and heterozyote cultured human skin fibroblasts. Proc Natl Acad Sci USA 65:577–584

    Google Scholar 

  • Geerdink RA, De Vries WHM, Willemse J, Oei TL, De Bruyn CHMM (1973) An atypical case of hypoxanthine-guanine phosphoribosyl transferase deficiency (Lesch-Nyhan syndrome). I. Clinical studies. Clin Genet 4:348–352

    Google Scholar 

  • Gröbner W, Zöllner N (1979) Eigenschaften der Hypoxanthinguaninphosphoribosyltransferase (HGPRTase) bei einem Gichtpatienten mit verminderter Aktivität dieses Enzyms. Klin Wochenschr 57: 63–68

    Google Scholar 

  • Gutensohn W, Jahn H (1979) Partial deficiency of hypoxanthinephosphoribosyl transferase: evidence for a structural mutation in a patient with gout. Eur J Clin Invest 9:43–47

    Google Scholar 

  • Kelley WN, Beardmore TD (1970) Allopurinol: alteration in pyrimidine metabolism in man. Science 169:388–390

    Google Scholar 

  • Kelley WN, Meade JC (1971) Studies on hypoxanthine-guanine phosphoribosyl transferase in fibroblasts from patients with the Lesch-Nyhan syndrome. J Biol Chem 246:2953–2958

    Google Scholar 

  • Kelley WN, Wijngaarden JB (1978) The Lesch-Nyhan syndrome. In: Stanbury JB, Wijngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill Book Co, New York, p 1011

    Google Scholar 

  • Krenitsky TA, Papaioannou R (1969) Human hypoxanthine phosphoribosyl transferase. II. Kinetics and chemical modification. J Biol Chem 244:1271–1277

    Google Scholar 

  • Lommen EJP (1973) Hypoxanthine guanine phosphoribosyl transferase deficiency, a clinical and biochemical study. Thesis, University of Nijmegen, The Netherlands

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • McDonald JA, Kelley WN (1974) Hypoxanthine-guanine phosphoribosyl transferase deficiency: altered kinetic properties of a specific mutant form of the enzyme. Adv Exp Med Biol 41A: 167–175

    Google Scholar 

  • Oerlemans F, Verheggen Th, Mikkers F, Everaerts F, de Bruyn CHMM (1980) Analysis of serum purines and pyrimidines by isotachophoresis. Adv Exp Med Biol 122B:429–433

    Google Scholar 

  • Sahota A, Smimonds HA, Payne RH (1979) Separation of urinary purines and pyrimidines by isotachophoresis: usefulness in screening for inborn errors of purine and pyrimidine metabolism. J Pharm Methods 2:263–278

    Google Scholar 

  • Seegmiller JE (1976) Inherited deficiency of hypoxanthine-guanine phosphoribosyl transferase in X-linked uric aciduria (the Lesch-Nyhan syndrome and its variants). Adv Hum Genet 6:75–163

    Google Scholar 

  • Tax WJM, Veerkamp JH, Trijbels JMF, Schretlen EDAM (1976) Mechanism of allopurinol-mediated inhibition and stabilisation of human orotate phosphoribosyl transferase and orotidine phosphate decarboxylase. Biochem Pharmacol 25:2025–2032

    Google Scholar 

  • Tax WJ, Veerkamp JH (1977) A simple and sensitive method for estimating the concentration and synthesis of 5-phosphoribosyl-1-pyrophosphate in red blood cells. Clin Chim Acta 78:209–216

    Google Scholar 

  • Uitendaal MP, de Bruyn CHMM, Oei TL, Hösli P (1978a) Molecular and tissue-specific heterogeneity in HPRT deficiency. Biochem Genet 16:1187–1202

    Google Scholar 

  • Uitendaal MP, de Bruyn CHMM, Oei TL, Geerts SJ, Hösli P (1978b) Fluctuating adenosine deaminase activities in cultured fibroblasts. Biochem Med 20:54–62

    Google Scholar 

  • Uitendaal MP, de Bruyn CHMM, Oei TL, Hösli P, Griscelli C (1978c) A new ultramicrochemical assay for purine nucleoside phosphorylase. Anal Biochem 84:147–143

    Google Scholar 

  • Upchurch KS, Leyva A, Arnold WJ, Holmes EW, Kelley WN (1975) Hypoxanthine phosphoribosyl transferase deficiency: association of reduced catalytic activity with reduced levels of immunologically detectable enzyme protein. Proc Natl Acad Sci USA 72:4142–4146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rijksen, G., Staal, G.E.J., van der Vlist, M.J.M. et al. Partial hypoxanthine-guanine phosphoribosyl transferase deficiency with full expression of the Lesch-Nyhan syndrome. Hum Genet 57, 39–47 (1981). https://doi.org/10.1007/BF00271165

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271165

Keywords

Navigation