Skip to main content
Log in

The cyclic 3′,5′-adenosine monophosphate receptor protein and regulation of cyclic 3′,5′-adenosine monophosphate synthesis in Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Rates of synthesis of cyclic 3′,5′-adenosine monophosphate (cAMP) were measured in cultures of Escherichia coli aerating without a carbon source. This technique provides a representative measure of adenylate cyclase activity in the absence of inhibition caused by transport of the carbon source. Adenylate cyclase activity was found to vary more than 20-fold depending on the carbon source that had been available during growth. Synthesis of cAMP in cells aerating in the absence of the carbon source was highest when cells had been grown with glucose or fructose which inhibit adenylate cyclase activity severely. Synthesis of cAMP was much lower when cells had been grown with glycerol or succinate which cause only minimal inhibition of the activity.

The variation in cAMP synthesis due to different carbon sources requires a functional cAMP receptor protein (CRP). Crp- mutants synthesize cAMP at comparable rates regardless of the carbon source that afforded growth. A novel mutant of E. coli having a CRP no longer dependent on cAMP has been isolated and characterized. Adenylate cyclase activity in this mutant no longer responds normally to variations in the carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, M.D., Ames, B.N.: transport of antibiotics and metabolite analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium cya and crp mutants. J. Bact. 133, 149–157 (1978)

    Google Scholar 

  • Anderson, W.B., Schneider, A.B., Emmer, M., Perlman, R.L., Pastan, I.: Purification and properties of the cyclic adenosine 3′, 5′-monophosphate receptor protein which mediates adenosine 3′,5′-monophosphate dependent gene transcription in Escherichia coli. J. biol. Chem. 245, 5929–5937 (1971)

    Google Scholar 

  • Bachman, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Braedt, G., Gallant, J.: Role of the rel gene product in the control of cyclic 3′,5′-adenosine monophosphate accumulation. J. Bact. 129, 564–566 (1976)

    Google Scholar 

  • Brickman, E., Soll, L., Beckwith, J.: Genetic characterization of mutations which affect catabolite sensitive operons in Escherichia coli: Including deletions of the gene for adenyl cyclase. J. Bact. 116, 582–587 (1973)

    Google Scholar 

  • Buettner, M.J., Spitz, E., Rickenberg, H.V.: Cyclic adenosine 3′,5′-monophosphate in Escherichia coli. J. Bact. 114, 1068–1075 (1973)

    Google Scholar 

  • Botsford, J.L.: Metabolism of cyclic adenosine 3′,5′-monophosphate and induction of tryptophanase in Escherichia coli. J. Bact. 124, 380–390 (1975)

    Google Scholar 

  • Dallas, W.S., Tseng, Y.-H., Dobrogosz, W.J.: Regulation of membrane functions and fatty acid composition in Escherichia coli by cyclic AMP receptor protein. Arch. Biochem. Biophys. 175, 295–320 (1976)

    Google Scholar 

  • Danley, D.E., Drexler, M., Botsford, J.L.: Differential binding of cyclic adenosine 3′,5′-monophosphate to the cyclic adenosine 3′,5′-monophosphate receptor protein in Escherichia coli. J. Bact. 130, 563–565 (1977)

    Google Scholar 

  • Emmer, M., Crombrugghe, B. de, Pastan, I., Perlman, R.: Cyclic AMP receptor protein of E. coli: Its role in synthesis of inducible enzymes. Proc. nat. Acad. Sci. (Wash.) 60, 480–487 (1970)

    Google Scholar 

  • Epstein, W., Rothman-Dennes, L.B., Hesse, J.: cAMP as mediator of catabolite repression in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 72, 2300–2304 (1975)

    Google Scholar 

  • Gallant, J., Margason, G., Finch, B.: On the turnover of ppGpp in Escherichia coli. J. biol. Chem. 247, 6055–6058 (1972)

    Google Scholar 

  • Gilman, A.F.: A protein binding assay for cAMP. Proc. nat. Acad. Sci. (Wash.) 67, 305–312 (1970)

    Google Scholar 

  • Haggerty, D.M., Schleif, R.F.: Kinetics of the onset of catabolite repression in Escherichia coli as determined by lac mRNA iniations and intracellular cAMP levels. J. Bact. 123, 946–953 (1975)

    Google Scholar 

  • Harwood, J.P., Gazdar, C., Prasad, C., Curtis, S.J., Epstein W., Peterkofsky, A.: Involvement of the glucose enzymes II of the sugar phosphotransferase in the regulation of adenylate cyclase in Escherichia coli. J. biol. Chem. 251, 2462–2468 (1976)

    Google Scholar 

  • Harwood, J., Peterkofsky, A.: Glucose sensitive adenylate cyclase in toluene treated cells of Escherichia coli. J. biol. Chem. 250, 4656–4662 (1975)

    Google Scholar 

  • Hua, S.-S., Markovitz, A.: Regulation of the galactose operon at the gal operator-promoter in Escherichia coli K-12. J. Bact. 122, 510–517 (1975)

    Google Scholar 

  • Kaplan, S., Atherly, A.G., Barreit, A.: Synthesis of stable RNA in stringent E. coli in the absence of charged tRNA. Proc. nat. Acad. Sci. (Wash.) 70, 683–692 (1973)

    Google Scholar 

  • Kumar, S.: Properties of cya and crp mutants of Escherichia coli. J. Bact. 125, 545–555 (1976)

    Google Scholar 

  • Leavitt, R.I., Umbarger, H.E.: Isoleucine and valine metabolsim in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli K-12. J. Bact. 83, 624–630 (1962)

    Google Scholar 

  • Magasanik, B.: Inducer exclusion and repression, pp. 219–241. In: The lac operon. (D. Zipser and J. R. Beckwith, eds.), New York: Cold Spring Harbor Laboratory 1970.

    Google Scholar 

  • Miller, J.H.: Experiments in molecular gentics. New York: Cold Spring Harbor Laboratory 1972

    Google Scholar 

  • Nielsen, L.D., Monard, D., Rickenberg, H.V.: Cyclic 3′,5′-adenosine monophosphate phosphodiesterase of Escherichia coli. J. Bact. 116, 857–866 (1973)

    Google Scholar 

  • Pastan, I., Adhya, S.: Cyclic adenosine 3′,5′-monophosphate in Escherichia coli. Bact. Rev. 40, 527–551 (1976)

    Google Scholar 

  • Pastan, I., Galli, M., Anderson, W.B.: The purification and analysis of mechanism of action of a cyclic AMP-receptor protein from Escherichia coli. Meth. in Enz. 38 (Part C), 367–375 (1974)

    Google Scholar 

  • Peterkofsky, A.: Regulation of Escherichia coli adenylate cyclase by phosphorylation-dephosphorylation. Trends in Biochem. Sci. 2, 2–14 (1977)

    Google Scholar 

  • Peterkofsky, A., Gazdar, C.: Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc. nat. Acad. Sci. (Wash.) 71, 2324–2378 (1974)

    Google Scholar 

  • Peterkofsky, A., Gazdar, C.: Interaction of enzyme I of the phosphoenol pyruvate sugar phosphotransferase system with adenylate cyclase. Proc. nat. Acad. Sci (Wash.) 72, 2920–2924 (1975)

    Google Scholar 

  • Peterkofsky, A., Gazdar, C.: Glucose and the metabolism of adenosine 3′:5′-cyclic monophosphate in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 2794–2798 (1971)

    Google Scholar 

  • Peterkofsky, A., Gazdar, C.: Measurements of cAMP synthesis in intact Escherichia coli B. Proc. nat. Acad. Sci. (Wash.) 70, 2143–2152 (1973)

    Google Scholar 

  • Peterkofsky, A., Harwood, J., Gazdar, C.: Inducibility of sugar sensitivity of adenylate cyclase of E. coli B. J. Cyclic Nucl. Res. 1, 11–20 (1975)

    Google Scholar 

  • Potter, K., Chalmers-Larson, G., Yamazaki, H.: Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem. biophys. Res. Commun. 57, 379–386 (1974)

    Google Scholar 

  • Prusiner, S., Miller, R.W., Valentine, R.C.: Adenosine 3′:5′-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 2922–2926 (1973)

    Google Scholar 

  • Rephaeli, A.W., Saier, M.H.: Effects of crp mutations on adenosine 3′:5′-monophosphate metabolism in Salmonella typhimurium. J. Bact. 127, 120–127 (1976)

    Google Scholar 

  • Saier, M.H.: Bacterial phosphoenolpyruvate sugar phosphotransferase systems: Structural, functional, and evolutionary interrelationship. Bact. Rev. 41, 856–871 (1977)

    Google Scholar 

  • Saier, M.H., Feucht, B.U., Hofstadler, L.H.: Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzyme II of the phosphoenol pyruvate: sugar phosphotransferase system in Escherichia coli. J. biol. Chem. 251, 883–892 (1976)

    Google Scholar 

  • Saier, M.H., Feucht, B.U.: Co-ordinate regulation of adenylate cyclase and carbohydrate transport by phosphoenol pyruvate sugar phosphotransferase system in Salmonella typhimurium. J. biol. Chem. 250, 7078–7080 (1975)

    Google Scholar 

  • Saier, M.H., Feucht, M.H., McCamen, R.T.: Regulation of intracellular adenosine 3′:5′-monophosphate levels in Escherichia coli and Salmonella typhimurium. J. biol. Chem. 250, 7593–7597 (1975)

    Google Scholar 

  • Sanders, R., McGeoch, D.: A mutant transcription factor that is activated by 3′,5′-cyclic guanosine monophosphate. Proc. nat. Acad. Sci. (wash.) 70, 1077–1081

  • Silverstone, A.G., Groman, M., Scaife, J.G.: A1 +: a new factor involved in the synthesis of RNA by Escherichia coli. Molec. gen. Genet. 118, 223–234 (1972)

    Google Scholar 

  • Wayne, P.K., Rosen, O.M.: Cyclic 3′,5′-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Pro. nat. Acad. Sci. (Wash.) 71, 1436–1440 (1974)

    Google Scholar 

  • Zubay, G., Schwartz, D., Beckwith, J.: Mechanism of activation of catabolite sensitive genes: A positive control system. Proc. nat. Acad. Sci. (Wash.) 60, 104–110 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. O'Donovan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botsford, J.L., Drexler, M. The cyclic 3′,5′-adenosine monophosphate receptor protein and regulation of cyclic 3′,5′-adenosine monophosphate synthesis in Escherichia coli . Molec. Gen. Genet. 165, 47–56 (1978). https://doi.org/10.1007/BF00270375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270375

Keywords

Navigation