Skip to main content
Log in

Transfection of Escherichia coli by Mu DNA

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Infectivity of Mu DNA was demonstrated in Ca++-treated Escherichia coli cells that lacked the nucleases Exo V and Endo I. The efficiency of transfection is about 10-7 per phage equivalent. Infectivity is destroyed by denaturation of Mu DNA, and cannot be restored by renaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard, R.K.: Segregation of lambda lysogenicity during bacterial recombination in Escherichia coli K12. Genetics 39, 429–439 (1954)

    Google Scholar 

  • Arnberg, A.C., Arwert, F.: DNA-protein complex in circular DNA from Bacillus bacteriophage GA-1. J. Virol. 18, 783–784 (1976)

    Google Scholar 

  • Bachrach, U., Friedmann, A., Levin, R., Nygaard, A.P.: Transfer of internal proteins from phage to host and their association with bacterial membranes. J. gen. Virol. 23, 117–127 (1974)

    Google Scholar 

  • Benzinger, R., Enquist, L.W., Skalka, A.: Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec + and rec spheroplasts measured with different forms of bacteriophage DNA. J. Virol. 15, 861–871 (1975)

    Google Scholar 

  • Bode, V.C., Kaiser, A.D.: Changes in the structure and activity of λ DNA in a superinfected immune bacterium. J. molec. Biol. 14, 399–417 (1965)

    Google Scholar 

  • Clark, A.J.: Recombination deficient mutants of E. coli and other bacteria. Ann. Rev. Genet. 7, 67–86 (1973)

    Google Scholar 

  • Cohen, G., Zimmer, Z.: Transfection of Escherichia coli by bacteriophage P1 DNA. Molec. gen. Genet. 128, 183–186 (1974)

    Google Scholar 

  • Cohen, S.N., Chang, A.C.Y., Hsu, L.: Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. nat. Acad. Sci. (Wash.) 69, 2110–2114 (1972)

    Google Scholar 

  • Couturier, M., Van Vliet, F.: Vegetative recombination in bacteriophage Mu-1. Virology 60, 1–8 (1974)

    Google Scholar 

  • Daniell, E., Abelson, J., Kim, J.S., Davidson, N.: Heteroduplex structures of bacteriophage Mu DNA. Virology 51, 237–239 (1973)

    Google Scholar 

  • Daniell, E., Kohne, D.E., Abelson, J.: Characterization of the inhomogeneous DNA in virions of bacteriophage Mu by DNA reannealing kinetics. J. Virol. 15, 739–743 (1975)

    Google Scholar 

  • Davis, R.W., Simon, M., Davidson, N.: Eleciron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. Methods in Enzymology 21, part D, 413–428 (1971)

    Google Scholar 

  • Doerfler, W., Hogness, D.S.: Gene orientation in bacteriophage lambda as determined from the genetic activities of heteroduplex DNA formed in vitro. J. molec. Biol. 33, 661–678 (1968)

    Google Scholar 

  • Dürwald, H., Hoffmann-Berling, H.: Endonuclease I-deficient and ribonuclease I-deficient Escherichia coli mutants. J. molec. Biol. 34, 331–346 (1968)

    Google Scholar 

  • Henner, W.D., Kleber, I., Benzinger, R.: Transfection of Escherichia coli spheroplasts. III. Facilitation of transfection and stabilization of spheroplasts by different basic polymers. J. Virol. 12, 741–747 (1973)

    Google Scholar 

  • Hirokawa, H.: Transfecting deoxyribonucleic acid of Bacillus bacteriophage Φ29 that is protease sensitive. Proc. nat. Acad. Sci. (Wash.) 69, 1555–1559 (1972)

    Google Scholar 

  • Howard, B.D.: Infectivity of lambda heteroduplex deoxyribonucleic acid molecules. J. Virol. 11, 17–24 (1973)

    Google Scholar 

  • Howe, M.M., Bade, E.G.: Molecular biology of bacteriophage Mu. Science 190, 624–632 (1975)

    Google Scholar 

  • Hsu, M.-T., Davidson, N.: Electron microscope heteroduplex study of the heterogeneity of Mu phage and prophage DNA. Virology 58, 229–239 (1974)

    Google Scholar 

  • Kaiser, A.D., Hogness, D.S.: The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage λdg. J. molec. Biol. 2, 392–415 (1960)

    Google Scholar 

  • Kushner, S.R., Nagaishi, H., Clark, A.J.: Isolation of exonuclease VIII: the enzyme associated with the sbcA indirect suppressor. Proc. nat. Acad. Sci. (Wash.) 71, 3593–3597 (1974)

    Google Scholar 

  • Kushner, S.R., Nagaishi, H., Templin, A., Clark, A.J.: Genetic recombination in Escherichia coli: the role of exonuclease I. Proc. nat. Acad. Sci. (Wash.) 68, 824–827 (1971)

    Google Scholar 

  • Lawhorne, L., Kleber, I., Mitchell, C., Benzinger, R.: Transfection of Escherichia coli spheroplasts. II. Relative infectivity of native, denatured, and renatured lambda, T7, T5, and P22 bacteriophage DNAs. J. Virol. 12, 733–740 (1973)

    Google Scholar 

  • Mandel, M., Higa, A.: Calcium-dependent bacteriophage DNA infection. J. molec. Biol. 53, 159–162 (1973)

    Google Scholar 

  • Murray, N.E., Murray, K.: Manipulation of restriction targets in phage λ to form receptor chromosomes for DNA fragments. Nature (Lond.) 251, 476–481 (1974)

    Google Scholar 

  • Oishi, M., Cosloy, S.D.: The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem. biophys. Res. Commun. 49, 1568–1572 (1972)

    Google Scholar 

  • Schroeder, W., Bade, E.G., Delius, H.: Participation of Escherichia coli DNA in the replication of temperate bacteriophage Mul. Virology 60, 534–542 (1974)

    Google Scholar 

  • Taketo, A., Kuno, S.: Sensitivity of Escherichia coli to viral nucleic acid. VII. Further studies on Ca2+-induced competence. J. Biochem. 75, 59–67 (1974)

    Google Scholar 

  • Thomas, M., Davis, R.W.: Studies on the cleavage of bacteriophage lambda DNA with EcoRI restriction endonuclease. J. molec. Biol. 91, 315–328 (1975)

    Google Scholar 

  • Tomizawa, J., Ogawa, H.: Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nature (Lond.) New Biol. 239, 14–15 (1972)

    Google Scholar 

  • Unger, R.C., Clark, A.J.: Interaction of the recombination pathways of bacteriophage λ and its host Escherichia coli K12: effects on exonuclease V activity. J. molec. Biol. 70, 539–548 (1972)

    Google Scholar 

  • Wackernagel, W.: An improved spheroplast assay for λ-DNA and the influence of the bacterial genotype on the transfection rate. Virology 48, 94–103 (1972)

    Google Scholar 

  • Wackernagel, W.: Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem. biophys. Res. Commun. 51, 306–311 (1973)

    Google Scholar 

  • Waggoner, B.T., González, N.S., Taylor, A.L.: Isolation of heterogeneous circular DNA from induced lysogens of bacteriophage Mu-1. Proc. nat. Acad. Sci. (Wash.) 71, 1255–1259 (1974)

    Google Scholar 

  • Wijffelman, C.A., Westmaas, G.C., van de Putte, P.: Vegetative recombination of bacteriophage Mu-1 in Escherichia coli. Molec. gen. Genet. 116, 40–46 (1972)

    Google Scholar 

  • Yajko, D.M., Weiss, B.: Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 72, 688–692 (1975)

    Google Scholar 

  • Young, E.T., II, Sinsheimer, R.L.: Novel intra-cellular forms of lambda DNA. J. molec. Biol. 10, 562–564 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahmann, R., Kamp, D. & Zipser, D. Transfection of Escherichia coli by Mu DNA. Molec. Gen. Genet. 149, 323–328 (1976). https://doi.org/10.1007/BF00268534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268534

Keywords

Navigation