Skip to main content
Log in

Characterisation of mutants of Escherichia coli K12, selected by resistance to streptozotocin

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

From cultures of sensitive bacteria, treated with the antibiotic streptozotocin, two classes of resistant mutants can be isolated: 1) mutants, resistant under all the conditions tested to even the highest doses of the antibiotic. These are either pleiotropicdefective, pts-mutants, or more frequently, mutants lacking a transport system (enzyme IINag-complex of the PEP-dependent phosphotransferase system) encoded by the gene nagE. This gene is inducible by N-acetyl-glucosamine and seems to be part of the nag operon. The transport system in question is responsible for the uptake of N-acetyl-glucosamine, of D-glucosamine and of streptozotocin; 2) conditional resistant mutants which are unable to energize or to synthesize the streptozotocin transport system under certain growth conditions but do have the transport activity under other conditions. These include a) mutants auxotrophic for amino acids, vitamins, or nucleotides, b) mutants negative or sensitive to carbohydrates in the medium, and c) mutants with defects in energy metabolism such as PEP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, M.D., Ames, B.N.: Transport of antibiotics and metabolite analogs by systems under cyclicAMP control: positive selection of Salmonella typhymurium cya and crp mutants. J. Bacteriol. 133, 149–157 (1978)

    Google Scholar 

  • Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K 12. Bacteriol. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Braun, V.: Membranpermeation and Antibiotika-Resistenz bei Bakterien. Naturwissenschaften 64, 126–132 (1977)

    Google Scholar 

  • Helling, R.B., Adams, B.S.: Nalidixic acid-resistant auxotrophs of Escherichia coli. J. Bacteriol. 104, 1027–1029 (1970)

    Google Scholar 

  • Holmes, R.P., Russel, R.R.B.: Mutations affecting amino sugar metabolism in Escherichia coli K12. J. Bacteriol. 111, 290–291 (1972)

    Google Scholar 

  • Ishida, R., Seto, S., Osawa, T.: Use of dihydrostreptomycin for the isolation of auxotrophic mutants of Pseudomonas aeruginosa. J. Bacteriol 91, 1387–1387 (1966)

    Google Scholar 

  • Lengeler, J.: Untersuchungen zum Glukose Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Z. Vererbungsl. 98, 201–229 (1966)

    Google Scholar 

  • Lengeler, J.: Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K12: isolation and mapping. J. Bacteriol 124, 26–38 (1975)

    Google Scholar 

  • Lengeler, J.: Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12. Mol. Gen. Genet. 152, 83–91 (1977)

    Google Scholar 

  • Lengeler, J.: Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiol. letters 5, 417–419 (1979)

    Google Scholar 

  • Lengeler, J.: Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K12 and other sensitive bacteria. Archiv. Microbiol. (submitted, 1980)

  • Lengeler, J., Steinberger, H.: Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12. Mol. Gen. Genet. 167, 75–82 (1978)

    Google Scholar 

  • Lin, E.C.C.: The genetics of bacterial transport systems. Annu. Rev. Genet. 4, 225–262 (1970)

    Google Scholar 

  • Postma, P.W., Roseman, S.: The bacterial phosphoenolpyruvate: sugar phosphotransferase system Biochim. Biophys. Acta. 457, 213–257 (1976)

    Google Scholar 

  • Ruch, F.E., Lengeler, J., Lin, E.C.C.: Regulation of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 119, 50–56 (1974)

    Google Scholar 

  • Sanzey, B.: Modulation of gene expression by drugs affecting deoxyribonucleic acid gyrase. J. Bacteriol. 138, 40–47 (1978)

    Google Scholar 

  • Smith, C.L., Kubo, M., Imamoto, F.: Promotor-specific inhibition of transcription by antibiotics which act on DNA gyrase. Nature 275, 420–423 (1978)

    Google Scholar 

  • Thorbjarnardottir, S.H., Magnusdottir, R.A., Eggertson, G.: Mutations determining generalized resistance to aminoglycoside antibiotics in Escherichia coli. Mol. Gen. Genet. 161, 89–98 (1978)

    Google Scholar 

  • Tomasz, A.: The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 33, 113–137 (1979)

    Google Scholar 

  • Weiner, R.M., Voll, M.J., Cook, T.M.: Nalidixic acid for enrichment of auxotrophic cultures of Salmonella typhimurium. Appl. Microbiol. 28, 579–581 (1974)

    Google Scholar 

  • White, R.J.: Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars. Biochem. J. 106, 847–858 (1968)

    Google Scholar 

  • White, R.J.: The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-glucosamine by Escherichia coli. Biochem. J. 118, 89–92 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengeler, J. Characterisation of mutants of Escherichia coli K12, selected by resistance to streptozotocin. Molec. Gen. Genet. 179, 49–54 (1980). https://doi.org/10.1007/BF00268445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268445

Keywords

Navigation