Skip to main content
Log in

DNA Supercoiling and transcription in Escherichia coli: Influence of RNA polymerase mutations

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Coumermycin A1, a specific inhibitor of DNA gyrase, differentially changes the spectrum of proteins synthesized in wild type E. coli cells but has no effect on the protein spectrum in mutant cells with coumermycin-resistant DNA gyrase. The rpoB265 mutation affecting RNA polymerase decreases the coumermycin A1-sensitivity of bacteria while the rpoC3 mutation increases it. The interaction of wild type and mutant RpoB265 RNA polymerases with ColE1 plasmid DNA in vitro is differently affected by DNA supercoiling. No such differences are observed in the case of RpoC3 RNA polymerase. The results suggest that template supercoiling may have a substantial effect on transcription in vivo, an effect which, in some cases, depends on the properties of RNA polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alikhanian, S.I., Khlebalina, O.I., Stepanov, A.I., Beburov, M.Yu., Kalinina, N.V., Debabov, V.G., Krivtsov, G.G., Galushko, F.P.: Construction of functional recombinants (hybrid) DNA molecules in vitro (Experiments on genetic engineering) (in Russian). Genetika 11, 34–45 (1977)

    Google Scholar 

  • Bauer, W., Vinograd, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–171 (1968)

    Google Scholar 

  • Bauer, W., Vinograd, J.: Circular DNA. In: Basic principles of nucleic acid chemistry (T'so, ed.), Vol. 2, pp. 265–303. New York: Academic Press 1974

    Google Scholar 

  • Botchan, P.: An electron microscopic comparison of transcription on linear and superhelical DNA. J. Mol. Biol. 105, 161–176 (1976)

    Google Scholar 

  • Botchan, P., Wang, J.C., Echols, H.: Effect of circularity and superhelicity on transcription of bacteriophage DNA. Proc. Natl. Acad. Sci. U.S.A. 70, 3077–3081 (1973)

    Google Scholar 

  • Burgess, R.R., Jendrisak, J.J.: A procedure for the rapid, largescale purification of E. coli RNA polymerase involving Polimin P precipitation and DNA-cellulose chromatography. Biochemistry 14, 4634–4638 (1975)

    Google Scholar 

  • Chao, L.: Regulation of RNA polymerase subunit synthesis in Escherichia coli: Utilization of DNA-intercalating drugs as a probe. Arch. Biochem. Biophys. 183, 242–249 (1977)

    Google Scholar 

  • Drlica, K., Snyder, M.: Superhelical Escherichia coli DNA: Relaxation by coumermycin. J. Mol. Biol. 120, 145–154 (1978)

    Google Scholar 

  • Gellert, M., Muzuuchi, K., K'Dea, M.H., Nash, H.A.: DNA gyrase: An enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. U.S.A. 73, 3872–3876 (1976a)

    Google Scholar 

  • Gellert, M., O'Dea, M.H., Itoh, T., Tomizawa, J.-I.: Novobiocin and coumermycin inhibit DNA supercoiling, catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73, 4474–4478 (1976b)

    Google Scholar 

  • Gorlenko, Zh.M., Aphanasiev, V.M., Yarulin, V.R.: The effect of rifampicin and mutation changing RNA polymerase on the spectrum of proteins synthesized by E. coli cells (in Russian). Mol. Biol. (Mosk.) (in press, 1979)

  • Hayashi, Y., Hayashi, M.: Template activities of the ϕX174 replicative allomorphie deoxyribonucleic acids. Biochemistry 10, 4212–4218 (1971)

    Google Scholar 

  • Hayward, G.S.: Gel electrophoretic separation of the complementary strands of bacteriophage DNA. Virology 49, 342–343 (1972)

    Google Scholar 

  • Hincle, D., Chamberlin, M.J.: Studies of the binding of E. coli RNA polymerase to DNA. I. The role of σ-subunit in site selection. J. Mol. Biol. 70, 157–185 (1972)

    Google Scholar 

  • Itoh, T., Tomizawa, J.-I.: Involvment of DNA gyrase in bacteriophage T7 replication. Nature 270, 78–80 (1977)

    Google Scholar 

  • Larionov, O.A., Gragerov, A.I., Kalyaeva, E.S., Nikiforov, V.G.: A cold-sensitive β-subunit mutant RNA polymerase from Escherichia coli with defect in promoter opening in vitro. Mol. Gen. Genet. 176, 105–111 (1979)

    Google Scholar 

  • Mangel, W., Chamberlin, M.J.: Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. I. An assay for the rate and extent of RNA chain initiation. J. Biol. Chem. 249, 2995–3001 (1974)

    Google Scholar 

  • Marians, K.J., Ikeda, J.E., Schlagman, S., Hurwitz, J.: Role of DNA gyrase in ϕ X replicative-form replication in vitro. Proc. Natl. Acad. Sci. U.S.A. 74, 1965–1968 (1977)

    Google Scholar 

  • Miller, J.H.: Experiments in molecular genetics. Second edition. New York: Cold Spring Harbor Laboratory 1974

    Google Scholar 

  • Mizuuchi, K., Gellert, M., Nash, H.A.: Involvment of superwisted DNA in integrative recombination of bacteriophage lambda. J. Mol. Biol. 121, 375–392 (1978)

    Google Scholar 

  • Puga, A., Tessman, I.: Mechanism of transcription of bacteriophage S13. I. Dependence of messenger RNA synthesis on amount and configuration of DNA. J. Mol. Biol. 75, 83–97 (1973a)

    Google Scholar 

  • Puga, A., Tessman, I.: Mechanism of transcription of bacteriophage S13. II. Inhibition of phage-specific transcription by nalidixic acid. J. Mol. Biol. 75, 99–108 (1973b)

    Google Scholar 

  • Radding, Ch.M.: Genetic recombination: Strand transfer and mismatch repair. Annu. Rev. Biochem. 47, 847–880 (1978)

    Google Scholar 

  • Richardson, J.P.: Initiation of transcription by E. coli RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2 DNA. J. Mol. Biol. 91, 477–487 (1975)

    Google Scholar 

  • Ryan, M.J.: Coumermycin, A1: A preferential inhibitor of replicative DNA synthesis in E. coli. I. In vivo characterization. Biochemistry 15, 3769–3777 (1976)

    Google Scholar 

  • Smith, O.L., Kubo, M., Imamoto, E.: Promoter-specific inhibition of transcription by antibiotics which act on DNA gyrase. Nature 275, 420–423 (1978)

    Google Scholar 

  • Staudenbauer, W.L.: Replication of the ampicillin resistance plasmid RSF1030 in extracts of escherichia coli: Separation of the replication circle into early and late stages. Mol. Genet. 156, 27–34 (1977)

    Google Scholar 

  • Sugino, A., Peebles, C.L., Kreuser, K.N., Cozzarelli, N.R.: Mechanism of action of nalidixic acid: Purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. U.S.A. 74, 4767–4771 (1977)

    Google Scholar 

  • Undritsov, I.M., Naktinis, V.I., Kolchinskii, A.M., Mirzabekov, A.D.: The nature of enzyme, relaxing superhelical DNA and isolated in a fraction of histon H1 (in Russian). Dokl. Akad. Nauk SSR 234, 1474–1477 (1977)

    Google Scholar 

  • Wang, J.C.: Interaction between twisted DNA-s and enzymes: The effect of superhelical turns. J. Mol. Biol. 87, 797–816 (1974)

    Google Scholar 

  • Warner, C.K., Schalier, H.: RNA polymerase promoter complex stability on supercoiled and relaxed DNA. FEBS Lett. 74, 215–219 (1977)

    Google Scholar 

  • Williams, R.C., Chamberlin, M.J.: Electron microscope studies of transient complexes formed between Escherichia coli RNA polymerase holoenzyme and T7 DNA. Proc. Natl. Acad. Sci. U.S.A. 74, 3770–3774 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Goldfarb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkin, S.M., Bogdanova, E.S., Gorlenko, Z.M. et al. DNA Supercoiling and transcription in Escherichia coli: Influence of RNA polymerase mutations. Molec. Gen. Genet. 177, 169–175 (1979). https://doi.org/10.1007/BF00267267

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267267

Keywords

Navigation