Skip to main content
Log in

Mitochondrial genetics

XI. Mutations at the mitochondrial locus ω affecting the recombination of mitochondrial genes in Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

  1. 1.

    A series of CS revertants has been selected from various strains (both ω+ and ω) carrying a CR mitochondrial mutation at the RIB1 locus. The properties of mitochondrial recombination exhibited by these CS revertants in various crosses, have been examined systematically. The ω allele of the CS revertants has been defined in crosses with ω+ and ω tester strains using two criteria: the polarity of recombination and a new criterium called relative output coefficient. We found that mutations of ω appear frequently associated with the mutations at the RIB1 locus selected from ω strains but not with those selected from ω+ strains. A new allelic form of ω (ωn) which had not been found amongst wild type yeast strains is characterised. Similarly ωn mutation was found frequently associated with CR mutants at the RIB1 locus selected from ω CS strains but not with those selected from ω+ CS strains. The ωn mutants, and the ω+ and ω strains, explain the groups of polarity previously observed by Coen et al. (1970).

  2. 2.

    Main features of mitochondrial crosses with ωn strains (ω+×ωn, ω×ωn and ωn×ωn) are analysed. Recombination is possible between the different mitochondrial genetic markers. No high polarity of recombination is observed and the frequency of recombinants are similar to those found in homosexual crosses (ω+×ω+ and ω×ω). A striking property, observed for the first time, exists in crosses between ϱ+ ω+×ωn CS strains and some ϱ CREO mutants: the ϱ CREO are unable to integrate by recombination their CR allele into the ϱ+ mit-DNA of ω CS strains while being capable of integrating it into ω+ CS or ω CS genomes.

  3. 3.

    It is proposed that the ω locus is the site of initiation of non reciprocal recombination events, the ω+ pairing specifically initiates the non-reciprocal act while ω+n or ωn pairings do not.

  4. 4.

    The molecular nature of the ωn mutation and its bearing on the structure of the ω locus are discussed. It is suggested that ωn mutations correspond to macrolesions (probably deletions) of a segment of the mit-DNA covering the ω and RIB1 loci. If ωn is a partial deletion of the ω sequence the ω+ could be an additionnal deletion of the ωn sequence.

  5. 5.

    The occurrence of spontaneous CR and ER mitochondrial mutations has been analysed by the Luria and Delbrück fluctuation test in ω and ωn isonuclear strains. Results of these tests indicate that an intracellular selection of resistant copies preexisting the action of the antibiotic occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avner, P.R., Coen, D., Dujon, B., Slonimski, P.P.: Mitochondrial Genetics. IV. Allelism and mapping studies of oligomycin-resistant mutants in S. cerevisiae. Molec. gen. Genet. 125, 9–52 (1973)

    Google Scholar 

  • Avner, P.R., Griffiths, D.E.: Studies on energy-linked reactions: Genetic analysis of oligomycin-resistant mutants of Saccharomyces cerevisiae. Europ. J. Biochem., 32, 312–321, (1973)

    Google Scholar 

  • Birky, C.W. Jr.: On the origin of mitochondrial mutants: evidence for intracellular selection of mitochondria in the origin of antibiotic resistant cells in yest. Genetics 74, 421–432 (1973)

    Google Scholar 

  • Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.P.: La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull. Inst. Pasteur 69, 215–239 (1971)

    Google Scholar 

  • Callen, D.: The effect of mating type on the polarity of mitochondrial gene transmission in Saccharomyces cerevisiae. Molec. Gen. Genet. 128, 321–329 (1974a)

    Google Scholar 

  • Callen, D.F.: Recombination and segregation of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 134, 49–63 (1974b)

    Google Scholar 

  • Callen, D.F.: Segregation of mitochondrially inherited antibiotic resistance in zygote cell lineages of Saccharomyces cerevisiae. Molec. gen. Genet. 134, 65–76 (1974c)

    Google Scholar 

  • Coen, D., Deutsch, J., Netter, P., Petrochilo, E., Slonimski, P.P.: Mitochondrial Genetics I. Methodology and Phenomenology. Symp. Soc. exp. Biol. 24, 449–496 (1970)

    Google Scholar 

  • Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.P., Bolotin-Fukuhara M., Coen D., Mitochondrial Genetics VI. The petite mutation in Saccharomyces cerevisiae: Interrelations between the loss of the 164-1 factor and the loss of the drug resistance mitochondrial genetic markers. Genetics 76, 195–219 (1974)

    Google Scholar 

  • Dujon, B., Slonimski, P.P., Weill, L.: Mitochondrial genetics. IX: A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78, 415–437 (1974)

    Google Scholar 

  • Dujon, B., Kruszewska, A., Slonimski, P.P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., Weill, L.: Mitochondrial genetics X. Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet 137, 29–72 (1975)

    Google Scholar 

  • Faye, G., Fukuhara, H., Grandchamp, C., Lazowska, J., Michel, F., Casey, J., Getz, G., Locker, J., Rabinowitz, M., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Slonimski, P.P.: Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetitions of genes. Biochimie 55, 779–792 (1973)

    Google Scholar 

  • Fowell, R.R.: Sporulation and hybridization of yeasts. In the yeasts, vol. 1 (Rose, A.M., Harrison, J.S., eds.), p. 303–383. London, New York. Acad. Press 1969

    Google Scholar 

  • Gillham, N.: Genetic analysis of the chloroplast and mitochondrial genomes. Ann. Rev. Genet. 8, 347–393 (1974)

    Google Scholar 

  • Gillham, N.W., Boynton, J.E., Lee, R.W.: Segregation and recombination of non-mendelian genes in Chlamydomonas. Genetics. 78, 439–457 (1974)

    Google Scholar 

  • Gillham, N.W., Levine, R.P.: Studies on the origin of streptomycin resistant mutants in Chlamydomonas reinhardi. Genetics 47, 1463–1474 (1962)

    Google Scholar 

  • Goldthwaite, C.D., Cryer, D.R., Marmur, J.: Effect of carbon source on the replication and transmission of yeast mitochondrial genomes. Molec. gen. Genet. 133, 87–104 (1974)

    Google Scholar 

  • Grivell, L.A., Netter, P., Borst, P., Slonimski, P.P.: Mitochondrial antibiotic resistance in yeast: Ribosomal mutants resistant to chloramphenicol, erythromycin and spiromycin. Biochim. biophys. Acta (Amst.) 312, 358–367 (1973)

    Google Scholar 

  • Howell, N., Trembath, M.K., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria XXX. An analysis of polarity of mitochondrial gene recombination and transmission. Molec. gen. Genet. 122, 37–51 (1973)

    Google Scholar 

  • Howell, N., Molloy, P.L., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria 34: The synergistic interaction of nuclear and mitochondrial mutations to produce resistance to high levels of mikamycin in Saccharomyces cerevisiae. Molec. Gen. Genet 128, 43–54 (1974a)

    Google Scholar 

  • Howell, N., Hall, R.M., Linnane, A.W., Lukins, H.B.: Genetic analysis of the polarity alleles in recombinants from mitochondrial genetic crosses. J. Bact. 119, 1063–1065 (1974b)

    Google Scholar 

  • Kleese, R.A., Grotbeck, R.C., Snyder J.R.: Two cytoplasmically inherited chloramphenicol resistance loci in yeast (Saccharomyces cerevisiae). Cand. J. Genet. Cytol. 14, 713–715 (1972a)

    Google Scholar 

  • Kleese, R.A., Grotbeck, R.C., Snyder, J.R.: Recombination among three mitochondrial genes in yeast (Saccharomyces, cerevisiae) J. Bact. 112, 1023–1025 (1972b)

    Google Scholar 

  • Lancashire, W.E., Griffiths, D.E.: Studies on energy-linked reactions: genetic analysis of venturicidin-resistant mutants. Europ. J. Biochem. 51, 403–413 (1975)

    Google Scholar 

  • Lukins, H.B., Tate, J.R., Saunders, G.W., Linnane, A.W.: The biogenesis of mitochondria XXVI. Mitochondrial recombination: the segregation of parental and recombinant mitochondrial genotypes during vegetative division of yeast. Molec. gen. Genet. 120, 17–25 (1973)

    Google Scholar 

  • Luria, S.E., Delbrück, M.: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943)

    Google Scholar 

  • Michaelis, G., Petrochilo, E., Slonimski, P.P.: Mitochondrial Genetics III. Recombined molecules of mitochondrial DNA obtained from crosses between cytoplasmic petite mutants of Saccharomyces cerevisiae: Physical and genetic characterization. Molec. gen. Genet. 123, 51–65, (1973)

    Google Scholar 

  • Mortimer, R.K., Howthorne, D.C.: In: The yeast. Vol. 1 (Rose, A.H., Harrison, J.S. eds), p. 386–460 London, New York. Academic Press 1969

    Google Scholar 

  • Netter, P., Petrochilo, E., Slonimski, P.P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B.: Mitochondrial Genetics VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin, and spiramycin in S. cerevisiae. Genetics 78, 1063–1100 (1974)

    Google Scholar 

  • Perasso, R., Adoutte, A.: The process of selection of erythromycinresistant mitochondria by erythromycin in Paramecium. J. Cell Sci. 14, 475–497 (1974)

    Google Scholar 

  • Perlman, P.S., Birky, Jr., C.W.: Mitochondrial genetics in bakers' yeast: A molecular mechanism for recombinational polarity and suppressiveness. Proc. nat. Acad. Sci. (Wash.) 71, 4612–4616 (1974)

    Google Scholar 

  • Plischke, M.E., Borstel, R.C. von, Mortimer, R.K., Cohn, W.E. Genetic markers and associated gene products in Saccharomyces cerevisiae. In: Handbook of biochemistry and molecular biology, 3rd ed., (Fasman, G.D., ed.), Cleveland, Ohio: Chemical Rubber C. Press (in press)

  • Rank, G.H.: Recombination in three factor crosses of cytoplasmically inherited antibiotic-resistance mitochondrial markers in S. cerevisiae. Heredity 30, 265–271 (1973)

    Google Scholar 

  • Rank, G.H., Bech-Hansen, N.T.: Somatic segregation, recombination, asymmetrical distribution and complementation tests of cytoplasmically inherited antibiotic-resistance mitochondrial markers in S. cerevisiae. Genetics 72, 1–15 (1972)

    Google Scholar 

  • Sager, R.: Streptomycin as a mutagen for non-chromosomal genes. Proc. nat. Acad. Sci. (Wash.) 48, 2018–2026 (1962)

    Google Scholar 

  • Suda, K., Uchida, A.: Segregation and recombination of cytoplasmic drug-resistance factors in Saccharomyces cerevisiae. Jap. J. Genet. 47, 441–444 (1972)

    Google Scholar 

  • Suda, K., Uchida, A.: The linkage relationship of the cytoplasmic drug-resistance factors in Saccharomyces cerevisiae. Molec. gen. Genet. 128, 331–339 (1974)

    Google Scholar 

  • Thomas D.Y., Wilkie, D.: Recombination of mitochondrial drug resistance factors in Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 30, 368–372 (1968)

    Google Scholar 

  • Trembath, M.K., Bunn, C.L., Lukins, H.B., Linnane A.W. Biogenesis of mitochondria. XXVII. Genetic and biochemical characterisation of cytoplasmic and nuclear mutations to spiramycin resistance in S. cerevisiac. Molec. gen. Genet. 121, 35–48 (1973)

    Google Scholar 

  • Wakabayashi, K., Kamei, S.: Oligomycin resistance in yeast. Linkage of the mitochondrial drug resistances. FEBS Let. 33, 263–265 (1973)

    Google Scholar 

  • Wakabayashi, K.: Studies on the mitochondrial gene: I. The recombination of mitochondrial drug resistances. J. Antibiot. 27, 373–378 (1974a)

    Google Scholar 

  • Wakabayashi, K.: On the recombination of mitochondrial genes. Proc. Jap. Acad. 50, 396–399 (1974b)

    Google Scholar 

  • Waxman, M.F., Eaton, N., Wilkie, D.: Effects of antibiotics on the transmission of mitochondrial factors in Saccharomyces cerevisiae. Molec. Gen. Genet. 127, 277–284 (1973)

    Google Scholar 

  • Wilkie, D., Thomas, D.Y.: Mitochondrial genetic analysis by zygote cell lineages in Saccharomyces cerevisiae, Genetics 73, 367–377 (1973)

    Google Scholar 

  • Wolf, K., Dujon, B., Slonimski, P.P.: Mitochondrial Genetics V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin resistance in Saccharomyces cerevisiae. Molec. gen. Genet. 125, 53–90 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dujon, B., Bolotin-Fukuhara, M., Coen, D. et al. Mitochondrial genetics. Molec. Gen. Genet. 143, 131–165 (1976). https://doi.org/10.1007/BF00266918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266918

Keywords

Navigation