Skip to main content
Log in

Calcium homeostasis and exercise

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

Calcium homeostasis is altered by strenuous physical exercise. The mechanism is unclear. Our study was designed to investigate this relationship, particularly any associated changes in the calcium regulating hormones. Six subjects carried out a strenuous exercise programme for 10 min on a bicycle ergometer. Blood samples were analysed for ionized calcium, total calcium, calcitonin and pH. Plasma parathormone was assayed using a new and very sensitive N-terminal assay. Serum ionized calcium was significantly elevated by exercise at 50% of maximum aerobic capacity (VO2 max.). The rise persisted until the late recovery phase, when it fell significantly below resting levels. Plasma parathormone levels were initially depressed by moderate exercise (50% VO2 max.) but were significantly elevated during and immediately after severe exercise. Our results suggest that exercise stimulates the hormonal, osteolytic influences acting on the skeleton, with increases in plasma parathormone and mobilisation of calcium stores. These changes may provide a supply of raw material allowing the osteogenic mechanical forces initiated by exercise to produce a positive skeletal balance. In view of the possible relevance of these findings to the understanding and management of osteoporosis we feel that this area merits further study.

Résumé

L'homéostasie du calcium est modifiée par une activité physique importante. Ce mécanisme n'est pas clairement expliqué. Le but de cette étude est d'examiner ce rapport, notamment en ce qui concerne les variations des hormones qui contrôlent la calcémie. Six sujets ont effectué un programme d'exercice intensif sur une bicyclette ergométrique pendant dix minutes. On a dosé sur des prélèvements sanguins le calcium ionisé, le calcium total, la calcitonine et le pH. On a titré la parathormone plasmatique en utilisant une nouvelle méthode N-terminale, très sensible. L'exercice élevait le taux de calcium ionisé sérique d'une manière significative à 50% de la capacité aérobique maxima (VO2 max.). Cette élévation s'est poursuivie jusqu'à la phase ultime de récupération, pour retomber ensuite significativement en dessous des taux observés chez les sujets au repos. Les taux de parathormone plasmatique s'abaissaient au début, lors d'un exercice modéré (50% VO2 max.) mais pendant et tout de suite après un exercice intense, ils se relevaient de manière significative. Nos résultats permettent de penser que l'effort active des influences hormonales ostéolytiques qui agissent sur le squelette par augmentation de la parathormone plasmatique et mobilisation des réserves calciques. Ces modifications peuvent fournir les éléments qui permettront aux forces mécaniques ostéogéniques de parvenir à une balance squelettique positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe M, Sherwood LM (1972) Regulation of parathyroid hormone secretion by adenyl cyclase. Biochem Biophys Res Comm 48: 396–401

    Google Scholar 

  2. Aloia JF, Cohn SH, Ostun JA, Cane R, Ellios K (1978) Prevention of involutional bone loss by exercise. Ann Intern Med 89: 356–358

    Google Scholar 

  3. Beaumont W, Strand JC, Petrofsky JS, Hipskind SG, Greenleaf JE (1973) Changes in total plasma content of electrolytes and proteins with maximal exercise. J Appl Physiol 34 (1): 102–106

    Google Scholar 

  4. Blum JW, Bianca W, Naf F, Kunz P, Fischer JA, Da-Prada M (1979) Plasma catecholamine and parathryoid hormone responses in cattle during treadmill exercise at simulated high altitude. Horm Metab Res 11: 246–251

    Google Scholar 

  5. Coe FL, Firpo JT, Hollandsworth DL, Segil L, Canterbury JN, Reiss E (1975) Effect of acute and chronic metabolic acidosis on serum immunoreactive parathyroid hormone in man. Kidney Int 8: 262–273

    Google Scholar 

  6. Duncan DB (1955) Multiple range and multiple F tests. Biom Mar 11: 1–41

    Google Scholar 

  7. Editorial (1983) Osteoporosis and activity. Lancet I: 1365–1366

  8. Goodman CE (1985) Osteoporosis: Protective measures of nutrition and exercise. Geriatrics 40(4): 58–70

    Google Scholar 

  9. Graham HK (1985) Ionized calcium in health and disease. MD thesis, Queen's University of Belfast, pp 60–69

  10. Harrison JE (1984) Neutron activation studies and the effect of exercise on osteoporosis. J Med 15: 285–294

    Google Scholar 

  11. Krolner B, Toft B (1983) Vertebral bone loss: An unheeded side effect of therapeutic bed rest. Clin Sci 64: 537–540

    Google Scholar 

  12. Krolner B, Toft B, Nielsen SP, Tondevold E (1983) Physical exercise as prophylaxis against involutional vertebral bone lose: a controlled trial. Clin Sci 64: 541–546

    Google Scholar 

  13. Lanyon LE, Rubin CT (1983) Regulation of bone mass in response to physical activity. In: Dixon A StJ, Russell RGG, Stamp TCB (eds) Osteoporosis, a multidisciplinary problem. R Soc Med London Internat Congress, Series 55: 51–61

    Google Scholar 

  14. Ljunghall S, Joborn H, Benson L, Fellstrom B, Wide L, Akerstrom G (1984) Effects of physical exercise on serum calcium and parathyroid hormone. Eur J Clin Invest 14: 469–473

    Google Scholar 

  15. Ljunghall S, Joborn H, Lundin L, Rastad J, Wide L, Akerstrom G (1985) Regional and systemic effects of short-term intense muscular work on plasma concentration and content of total and ionized calcium. Eur J Clin Invest 15: 248–252

    Google Scholar 

  16. Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissues during exercise. Acta Physiol Scand 85: 258–269

    Google Scholar 

  17. Nagent De Deuxchaisnes C (1983) The pathogenesis and treatment of involutional osteoporosis. In: Dixon A StJ, Russell RGG, Stamp TCB (eds) Osteoporosis, a multidisciplinary problem. R Soc Med London Internat Congress, Series 55: 51–61

    Google Scholar 

  18. Nordin BEC, Aaron J, Makins N, Francis R, Sagreiya K (1983) Bone formation and resorption in post menopausal osteoporosis. In: Dixon A StJ, Russell RGG, Stamp TCB (eds) Osteoporosis, a multidisciplinary problem. R Soc Med London, Series 55: 161–171

    Google Scholar 

  19. Pederson KO (1972) Binding of calcium to serum albumin. 11 Effect of pH via competitive hydrogen and calcium ion binding to the imidazole groups of albumin. Scan J Clin Lab Invest 29: 75–83

    Google Scholar 

  20. Potts JT (1983) Calcium metabolism. In: Dixon A StJ, Russell RGG, Stamp TCB (eds) Osteoporosis, a multidisciplinary problem. R Soc Med London Internat Congress, Series 55: 3–19

  21. Ruben JA, Bennett AF (1981) Intense exercise, bone structure and blood calcium levels in vertebrates. Nature 291: 411–413

    Google Scholar 

  22. Saville PD, Whyte MP (1969) Muscle and bone hypertrophy: positive effect of running exercise in the rat. Clin Orthop 65: 81–88

    Google Scholar 

  23. Smith R (1987) Osteoporosis: Cause and management. Br Med J 294: 329–332

    Google Scholar 

  24. Talmage RV (1969) Calcium homeostasis-calcium transport-parathyroid action. Clin Orthop 67: 210–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, S.A., Graham, H.K., Mollan, R.A.B. et al. Calcium homeostasis and exercise. International Orthopaedics 13, 69–73 (1989). https://doi.org/10.1007/BF00266727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266727

Keywords

Navigation