Skip to main content
Log in

Romanowsky dyes and Romanowsky-Giemsa effect

5. Structural investigations of the purple DNA-AB-EY dye complexes of Romanowsky-Giemsa staining

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18 100 cm−1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations.

Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18 100 cm−1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB≈1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions.

The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly orientated dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence. Subsequently, the absorption spectra of the highly orientated dye complexes were measured with plane polarized light. We found that the transition moments, m AB, of the bound AB cations in DNA-AB and DNA-AB-EY are orientated almost perpendicular to k, i.e. m ABk. On the contrary, the transition moments, m EY, of the bound EY anions in DNA-AB-EY are polarized parallel to k, i.e. m EYk. The transition moments m AB and m EY lay in the direction of the long axes of the AB and EY chromophores. For that reason, in both DNA-AB and DNA-AB-EY the long molecular axes of the AB cations are orientated approximately perpendicular to the DNA chains, while the long molecular axes of the EY chromophores are polarized in the direction of the DNA chains. Therefore, in DNA-AB-EY the long axes of AB and EY are perpendicular to each other, m ABm EY. This molecular arrangement fully agrees with our quantitative measurements and with the theory of the absorption of plane polarized light by orientated dye complexes, which has been developed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fajans H, Hassel O (1923) Eine neue Methode zur Tritation von Silber-und Halogenionen mit organischen Farbstoffindikatoren. Z Elektrochem 29:495–500

    Google Scholar 

  • Friedrich K (1989) Mikrospektralphotometrische und polarisationsoptische Untersuchungen zur Struktur des purpurnen Farbstoffkomplexes der Romanowsky-Giemsa-Färbung. Dissertation Universität Freiburg i. Br., Institut für Physikalische Chemie

  • Friedrich K, Hüglin D, Seiffert W, Zimmermann HW (1989) Modelluntersuchungen zur Struktur des purpurnen Farbstoffkomplexes der Giemsa-Färbung. Histochemistry 91:257–262

    Google Scholar 

  • Galbraith W, Marshall PN, Bacus IW (1980) Microspectrophotometric studies of Romanowsky stained blood cells. I. Subtraction analysis of a standardized procedure. J Microsc 119:313–330

    Google Scholar 

  • Gerlach D, Deuticke B (1963) Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie. Biochem Z 337:477–479

    Google Scholar 

  • Horobin RW, Walter KJ (1987) Understanding Romanowsky staining. I: the Romanowsky-Giemsa effect in blood smears. Histochemistry 86:331–336

    Google Scholar 

  • Hüglin D, Seiffert W, Zimmermann HW (1986) Spektroskopische und thermodynamische Untersuchungen zur Bindung von Azure B an Chondroitinsulfat und zur Bindungsgeometrie des metachromatischen Farbstoffkomplexes. Histochemistry 86:71–82

    Google Scholar 

  • Lapen D (1982) A standarized differential stain for haematology. Cytometry 2:309–315

    Google Scholar 

  • Marshall PN, Galbraith W, Navarro EF, Bacus IW (1981) Microspectrophotometric studies of Romanowsky stained blood cells. II. Comparison of the performance of two standardized stains. J Microsc 124:197–210

    Google Scholar 

  • Müller-Walz R, Zimmermann HW (1987) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt. 4. Mitteilung: Bindung von Azur B an DNA. Histochemistry 87:157–172

    Google Scholar 

  • Ohmes E, Pauluhn J, Weidner JU, Zimmermann HW (1980) Polarisationsoptische, mikrospektralphotometrische Untersuchung zur Bindungsgeometrie von intercaliertem Ethidiumbromid. Theorie für die Lichtabsorption orientierter doppelbrechender Fäden. Ber Bunsenges Phys Chem 84:23–36

    Google Scholar 

  • Wittekind D (1979) On the nature of Romanowsky dyes and the Romanowsky Giemsa effect. Clin Lab Haematol 1:247–262

    Google Scholar 

  • Wittekind DH (1983) On the nature of the Romanowsky Giemsa staining and its significance for cytochemistry and histochemistry: an overall view. Histochem J 15:1029–1047

    Google Scholar 

  • Wittekind D (1986) On the nature of the Romanowsky Giemsa staining and the Romanowsky Giemsa effect. In: Boon ME, Kok LP (eds) Standardization and quantitation of diagnostic staining in cytology. Coulomb Press, Leyden, pp 27–40, 118–119

    Google Scholar 

  • Wittekind D, Kretschmer V, Löhr W (1976) Kann Azur B — Eosin die May-Grünwald-Giemsa Färbung ersetzen. Blut 32:71–78

    Google Scholar 

  • Zimmermann HW (1986a) Physikochemische und cytochemische Untersuchung zur Bindung von Ethidium- und Acridinfarbstoffen an DNA und an Organellen in lebenden Zellen. Angew Chem 98:115–131

    Google Scholar 

  • Zimmermann HW (1986b) Physicochemical and cytochemical investigations on the binding of ethidium and acridine dyes to DNA and to organelles in living cells. Angew Chem Int (Engl) 25:115–130

    Google Scholar 

  • Zipfel E, Grezes JR, Seiffert W, Zimmermann HW (1981) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt. 1. Mitteilung: Azur B, Reinheit und Gehalt von Farbstoffen, Assoziation. Histochemistry 72:279–290

    Google Scholar 

  • Zipfel E, Grezes JR, Seiffert W, Zimmermann HW (1982) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt. 2. Mitteilung: Eosin Y, Erythrosin B, Tetrachlorfluorescein. Spektroskopische Charakterisierung der reinen Farbstoffe, Assoziation von Eosin Y. Histochemistry 75:539–555

    Google Scholar 

  • Zipfel E, Grezes JR, Naujok A, Seiffert W, Wittekind DW, Zimmermann HW (1984) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt, 3. Mitteilung: Mikrospektralphotometrische Untersuchung der Romanowsky-Giemsa-Färbung. Spektroskopischer Nachweis eines DNA — Azur B — Eosin Y — Komplexes, der den Romanowsky-Giemsa-Effekt verursacht. Histochemistry 81:337–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, K., Seiffert, W. & Zimmermann, H.W. Romanowsky dyes and Romanowsky-Giemsa effect. Histochemistry 93, 247–256 (1990). https://doi.org/10.1007/BF00266385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266385

Keywords

Navigation