Skip to main content
Log in

Thermophilic methanogenesis from gelatin by a mixed defined bacterial culture

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The fermentation of gelatin by different associations of bacteria, including Thermobacteroides proteolyticus, Methanobacterium sp. and Methanosarcina MP was studied. Experimental vessels were incubated at 55°C. T. proteolyticus growing axenically produced acetate, isovalerate, H2 and CO2. Traces of propionate and isobutyrate were detected. Cocultures of T. proteolyticus and Methanobacterium sp. showed an increase in propionate and isobutyrate production. The Thermobacteroides-Methanosarcina association had no effect on metabolism of T. proteolyticus, and acetate was not used.

In triculture, growth of Methanosarcina MP occurred on acetate in coculture with T. proteolyticus and Methanobacterium sp. Utilization of H2 by Methanobacterium sp. in the triculture lowered the H2 concentration sufficiently to permit acetate utilization by Methanosarcina. Maximum methane production was obtained with the triculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Breure AM, Van Andel JG (1984) Hydrolysis and acidogenic fermentation of a protein, gelatin, in an anaerobic continuous culture. Appl Microbiol Biotechnol 20:40–45

    Google Scholar 

  • Buchanan RE, Gibbons NE (1975) Bergey's Manual of Determinative Bacteriology, 8th ed., Williams and Wilkins Co., Baltimore, USA

    Google Scholar 

  • Cooney CL, Wise DW (1975) Thermophilic anaerobic digestion of solid waste for fuel gas production. Biotechnol Bioeng 17:1119–1135

    Google Scholar 

  • Dowell VR, Lombard GL (1981) Pathogenic members of the genus Bacteroides. In: Stolp H, Trüper HG, Balows A, Schlegel HG (eds), The Prokaryotes, vol II, Springer Verlag, Berlin, Heidelberg, New York, pp 1425–1449

    Google Scholar 

  • Ferguson TJ, Mah RA (1983) Effect of H2−CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl Environ Microbiol 46:348–355

    Google Scholar 

  • Garcia JL, Guyot JP, Ollivier B, Trad M, Paycheng C (1982) Ecologie microbienne de la digestion anaérobie: techniques de numération et d'isolement. Cah ORSTOM, sér Biol 45:3–15

    Google Scholar 

  • Gottschalk G, Andreesen JR, Hippe H (1981) The genus Clostridium (nonmedical aspects). In: Stolp H, Trüper HG, Balows A, Schlegel HG (eds), The Prokaryotes, vol II, Springer Verlag, Berlin, Heidelberg, New York, pp 1767–1803

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, Vol 3B, Academic Press, New York, pp 117–132

    Google Scholar 

  • Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    Google Scholar 

  • Jones WJ, Guyot JP, Wolfe RS (1984) Methanogenesis from sucrose by defined immobilized consortia. Appl Environ Microbiol 47:1–6

    Google Scholar 

  • Khan AW (1977) Anaerobic degradation of cellulose by mixed culture. Can J Microbiol 23:1700–1705

    Google Scholar 

  • Khan AW (1980) Degradation of cellulose to methane by a coculture of Acetivibrio cellulolyticus and Methanosarcina barkeri. FEMS Microbiol Lett 9:233–235

    Google Scholar 

  • Latham MJ, Wolin MJ (1977) Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 34:297–301

    Google Scholar 

  • Laube VM, Martin SM (1981) Conversion of cellulose to methane and carbon dioxide by triculture of Acetivibrio cellulolyticus, Desulfovibrio sp., and Methanosarcina barkeri. Appl Environ Microbiol 42:413–420

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  • Mah RA, Kuhn DA (1984) Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1937) comb. nov. et emend. and conservation of the genus Methanococcus (approved list 1980) with Methanococcus vannielii (approved list 1980) as the type species. Int J Syst Bacteriol 34:263–265

    Google Scholar 

  • Mah RA, Smith MR (1981) The methanogenic bacteria. In: Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Prokaryotes, Vol I, Springer Verlag, Berlin, Heidelberg, New York, pp 948–977

    Google Scholar 

  • Mah RA, Smith MR, Baresi L (1978) Studies on an acetate fermenting strain of Methanosarcina. Appl Environ Microbiol 35:1174–1184

    Google Scholar 

  • McInerney MJ, Bryant MP (1981) Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl Environ Microbiol 41:346–354

    Google Scholar 

  • Mountfort DO, Asher RA, Bauchop T (1982) Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl Environ Microbiol 44:128–134

    Google Scholar 

  • Nozhevnikova AN, Yagodina TG (1982) A thermophilic acetate methane producing bacterium. Mikrobiologiya 51:642–649

    Google Scholar 

  • Ollivier B, Lombardo A, Garcia JL (1984) Isolation and characterization of a new thermophilic Methanosarcina strain (Strain MP). Ann Microbiol (Inst Pasteur) 135B:187–198

    Google Scholar 

  • Ollivier B, Mah RA, Ferguson TJ, Boone DR, Garcia JL, Robinson R (1985) Emendation of the genus Thermobacteroides; Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst bacteriol 35:425–428

    Google Scholar 

  • Scheifinger CC, Linehan B, Wolin MJ (1975) H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl Microbiol 29:480–483

    Google Scholar 

  • Siebert ML, Toerien DF (1969) The proteolytic bacteria present in the anaerobic digestion of raw sewage sludge. Water Res 3:241–250

    Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    Google Scholar 

  • Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297

    Google Scholar 

  • Wolin MJ (1974) Metabolic interactions among intestinal microorganisms. Am J Clin Nutr 27:1320–1328

    Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2−CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollivier, B., Smiti, N., Mah, R.A. et al. Thermophilic methanogenesis from gelatin by a mixed defined bacterial culture. Appl Microbiol Biotechnol 24, 79–83 (1986). https://doi.org/10.1007/BF00266290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266290

Keywords

Navigation