Skip to main content
Log in

Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region

  • Short Communications
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Seventeen cis-dominant mutations leading to riboflavin overproduction in Bacillus subtilis were localized to the region between nucleotides + 37 and + 159 relative to the transcription initiation site of the riboflavin operon. This region displays an unusual structure for regulatory sequences. The main part of it represents clusters of A/T and G/Grich sequences that symmetrically blank a short inverted repeat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    Google Scholar 

  • Bresler SE, Glazunov EA, Perumov DA (1972) Riboflavin operon in Bacillus subtilis IV Regulation of biosynthesis of riboflavin synthase; study of riboflavin transport across the cell membrane. Genetika (in Russian) 8:109–118

    Google Scholar 

  • Bresler SE, Glazunov EA, Chernik TP, Schevchenko TN, Perumov DA (1973) Riboflavin operon in Bacillus subtilis. V. Flavin mononucleotide and flavin adenine dinucleotide as effectors of riboflavin operon. Genetika (in Russian) 9:84–91

    Google Scholar 

  • Bresler SE, Glazunov EA, Gorinchuk GF, Chernik TP, Perumov DA (1978) Riboflavin operon in Bacillus subtilis. XIV Investigation of operator constitutive mutants. Genetika (in Russian) 14:1530–1538

    Google Scholar 

  • Bresler SE, Machkovsky VV, Perumov DA, Budovsky El (1983) Mutagenic action of methoxyamine on transforming DNA. Genetika (in Russian) 19:1397–1403

    Google Scholar 

  • Budovsky El (1976) The mechanism of the mutagenic action of hydroxylamines. Progr Nucl Acid Res Mol Biol 16:125–188

    Google Scholar 

  • Chikindas ML, Lukyanov EV, Rabinovich PM, Stepanov AI (1987) Study of Bacillus subtilis 210° chromosomal region by the recombinant plasmid technique. Mol Genet Microbiol Virol (in Russian) 5:20–24

    Google Scholar 

  • Ebbole DJ, Zalkin H (1989) Interaction of putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J Biol Chem 264:3553–3561

    Google Scholar 

  • Kreneva RA, Perumov DA (1990) Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol Gen Genet 222:467–469

    Google Scholar 

  • Mironov VN, Kraev AS, Chernev BK, Iulianov AV, Golova UB, Pozmogova GE, Simonova ML, Gordeev VK, Stepanov AI, Skriabin KG (1989) Genes of riboflavin biosynthesis of Bacillus subtilis. Complete primary structure and model of organization. Dokl Acad Nauk SSSR (in Russian) 305:482–487

    Google Scholar 

  • Mironov VN, Chikindas ML, Kraev AS, Stepanov AI, Skriabin KG (1990a) Operon organization of riboflavin biosynthesis genes of Bacillus subtilis. Dokl Acad Nauk SSSR (in Russian) 312:237–240

    Google Scholar 

  • Mironov VN, Perumov DA, Kraev AS, Stepanov AI, Skriabin KG (1990b) Unusual structure of Bacillus subtilis riboflavin operon regulatory region. Mol Biol (in Russian) 24:256–261

    Google Scholar 

  • Nielsen P, Neuberger G, Fujii I, Bown DH, Keller PJ, Floss AG, Bacher A (1986) Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityl-lumazine from pentoso phosphates. J Biol Chem 261:3661–3669

    Google Scholar 

  • Ptashne M (1986) Gene regulation by protein acting nearby and at a distance. Nature 327:697–701

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Saito H, Miura KI (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 42:619–629

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Schulz VP, Reznikoff WS (1990) In vitro secondary structure analysis of mRNA from IacZ translation initiation mutants. J Mol Biol 211:427–445

    Google Scholar 

  • Singer B (1975) The chemical effect of nucleic acid alkylation and its relation to mutagenesis and carcinogenesis. Progr Nucl Acid Res Mol Biol 15:219–284

    Google Scholar 

  • Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA (1989) The transition state transition regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621

    CAS  PubMed  Google Scholar 

  • Van Kaer L, Van Montagu M, Dhaese P (1987) Transcriptional control in the EcoRl-F immunity region of Bacillus subtilis phage φ 105. Identification and unusual structure of the operator. J Mol Biol 197:55–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kil, Y.V., Mironovi, V.N., Gorishin, I.Y. et al. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Molec. Gen. Genet. 233, 483–486 (1992). https://doi.org/10.1007/BF00265448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265448

Key words

Navigation