Skip to main content
Log in

The degassing of Hawaiian tholeiite

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Accepting the Gerlach and Graeber (1985) estimates of the initial CO2 and H2O concentrations, we have calculated the variation of the concentrations of these gases, dissolved and/or exsolved, in Hawaiian tholeiite from the moment it is generated until it solidifies at the Earth's surface. These computations are extensions of our previous work (Bottinga and Javoy 1989, 1990a, 1990b) on the nucleation, growth and ascent of bubbles in mid-oceanic ridge basalt. The present study is different in that we consider low-pressure (P>1 bar) bubble nucleation and the presence of H2O. Our results indicate that: (1) Hawaiian liquid tholeiite is supersaturated with respect to CO2 when it erupts; (2) degassing of the basaltic liquid takes place during different stages, each of which gives rise to a compositionally distinct bubble population, which to a large extent is lost before the formation of a new population; (3) fumarolic gas compositions are affected by the pressure and temperature at which gas bubbles are released from the lava and the velocity with which lava is ejected from the magma chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on terrestrial planets. Pergamon Press Inc, New York, USA, 1286 pp

    Google Scholar 

  • Bottinga Y, Allègre CJ (1978) Partial melting under spreading ridges. Phil Trans R Soc London A 288:501–525

    Google Scholar 

  • Bottinga Y, Javoy M (1989) MORB degassing: evolution of CO2. Earth Planet Sci Lett 95:215–225

    Google Scholar 

  • Bottinga Y, Javoy M (1990a) Mid-oceanic ridge basalt degassing: bubble nucleation. J Geophys Res 95:5125–5131

    Google Scholar 

  • Bottinga Y, Javoy M (1990b) MORB degassing: bubble growth and ascent velocity. Chem Geol 81:255–270

    Google Scholar 

  • Burnham CW, Jahns RH (1962) A method for determining the solubility of water in silicate melts. Am J Sci 260:721–745

    Google Scholar 

  • Caddle RD (1980) A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev Geophys Space Phys 18:746–752

    Google Scholar 

  • Casdevall TJ, Stokes JB, Greenland LP, Malinconico LL, Casdevall JR, Furakawa BT (1987) SO2 and CO2 emission rates at Kilauea volcano, 1979–1984. US Geol Surv Prof Pap 1350:771–780

    Google Scholar 

  • De Santis R, Breedveld GJF, Prausnitz JM (1974) Thermodynamic properties of aqueous gas mixtures at advanced pressure. Ind Chem Eng Process Des Develop 13:374–377

    Google Scholar 

  • Decker RW (1987) Dynamics of Hawaiian volcanoes: an overview. US Geol Surv Prof Pap 1350:997–1018

    Google Scholar 

  • Delaney JR, Muenow DW, Graham DG (1978) Abundance and distribution of water, carbon dioxide and sulfur in the glassy rims of submarine pillow basalts. Geochim Cosmochim Acta 42:581–594

    Google Scholar 

  • Dixon JE, Stolper E, Delaney JR (1988) Infrared spectroscopic measurements of carbon dioxide and water in Juan de Fuca Ridge basaltic glasses. Earth Planet Sci Lett 90:87–107

    Google Scholar 

  • Eaton JP (1962) Crustal structure and volcanism in Hawaii. Am Geophys Union Mon 6:13–29

    Google Scholar 

  • Eaton JP, Richter DH, Krivoy HL (1987) Cycling of magma between the summit reservoir and Kilauea Iki lava lake during the 1959 eruption of Kilauea volcano. US Geol Surv Prof Pap 1350:1307–1335

    Google Scholar 

  • Eggler DH, Rosenhauer M (1978) Carbon dioxide solubility in silicate melts: solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Am J Sci 278:64–94

    Google Scholar 

  • Fine G, Stolper E (1985) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278

    Google Scholar 

  • Frenkel J (1955) Kinetic theory of liquids. Dover Publications Inc, New York

    Google Scholar 

  • Friedman I (1967) Water and deuterium in pumice from the 1959–60 eruption of Kilauea volcano, Hawaii. US Geol Surv Prof Pap 575-B:B120-B127

    Google Scholar 

  • Gerlach TM (1986) Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea volcano, Hawaii. J Geophys Res 91:12177–12185

    Google Scholar 

  • Gerlach TM, Graeber EJ (1985) The volatile budget of Kilauea. Nature 313:273–277

    Google Scholar 

  • Greenland LP (1987a) Composition of gases from the 1984 eruption of Mauna Loa. US Geol Surv Prof Pap 1350:781–803

    Google Scholar 

  • Greenland LP (1987b) Hawaiian eruptive gases. US Geol Surv Prof Pap 1350:759–770

    Google Scholar 

  • Greenland LP, Rose WI, Stokes JB (1985) An estimate of gas emissions and magmatic gas content from Kilauea volcano. Geochim Cosmochim Acta 49:125–129

    Google Scholar 

  • Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39

    Google Scholar 

  • Harris DM, Anderson AT (1983) Concentration, sources and losses of H2O, CO2, and S in Kilauea basalt. Geochim Cosmochim Acta 47:1139–1150

    Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: DG Fraser (ed) Thermodynamics in geology. Reidel Publ Co, Dordrecht, pp 161–181

    Google Scholar 

  • Holloway JR (1981) Volatile interactions in magmas. Adv Phys Geochem 1:273–293

    Google Scholar 

  • Hornyak EJ, Weinberg MC (1984) Velocity of a freely rising gas bubble in a soda-lime silicate glass melt. J Am Ceram Soc 67:C244–246

    Google Scholar 

  • Huppert EH, Sparks RSJ, Whitehead JA, Hallworth MA (1986) Replenishment of magma chambers by light inputs. J Geophys Res 91:6113–6122

    Google Scholar 

  • Ito K, Kennedy GC (1968) Melting and phase relations in the plane tholeiite-lherzolite-nepheline basanite to 40 kilobars with geological implications. Contrib Mineral Petrol 19:177–211

    Google Scholar 

  • Jambon A (1983) Diffusion dans les silicates fondus: un bilan des connaissances actuelles. Bull Min 106:229–246

    Google Scholar 

  • Jaupart C, Brandeis G (1986) The stagnant bottom layer of convecting magma chambers. Earth Planet Sci Lett 80:183–199

    Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

    Google Scholar 

  • Jaupart C, Vergniolle S (1989) The generation and collapse of foam layer at the roof of a basaltic magma chamber. J Fluid Mech 203:347–380

    Google Scholar 

  • Jucha RB, Powers D, McNeil T, Subramanian RS, Cole R (1982) Bubble rise in glass melts. J Am Ceram Soc 65:289–292

    Google Scholar 

  • Khitarov NI, Lebedev YB, Dorfman AM, Bagdasarov NS (1979) Effects of temperature, pressure and volatiles on the surface tension of molten basalt. Geochem Int 16:78–86

    Google Scholar 

  • Krämer F (1979) Mathematisches Modell der Veränderung von Glasblasen in Glasschemelzen. Glastechn Ber 52:43–50

    Google Scholar 

  • Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53:41–54

    Google Scholar 

  • Lapham KE, Holloway JR, Delaney JR (1984) Diffusion of H2O and D2O in obsidian at elevated temperatures and pressures. J Non-Cryst Solids 67:179–191

    Google Scholar 

  • Marty B, Ozima M (1986) Noble gas distribution in oceanic basalt glasses. Geochim Cosmochim Acta 50:1093–1097

    Google Scholar 

  • McMillan K, Cross RW, Long PE (1987) Two-stage vesiculation in the Cohasset flow of the Grande Ronde basalt, south central Washington. Geol 15:809–812

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592

    Google Scholar 

  • Mysen BO, Arculus RJ, Eggler D (1975) Solubility of carbon dioxide in melts of andesite, tholeiite and olivine nepheline compositions to 30 kbar pressure. Contrib Mineral Petrol 53:227–239

    Google Scholar 

  • Nordlie BE, Petershagen JH, Doden AG (1989) Experimental nucleation and growth of bubbles in a synthetic granitic melt. EOS 70:502

    Google Scholar 

  • Pineau F, Javoy M, Bottinga Y (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic ridge and their bearing on the problem of isotopic composition of deep seated carbon. Earth Planet Sci Lett 29:413–421

    Google Scholar 

  • Pineau F, Javoy M (1983) Carbon isotopes and concentrations in mid-oceanic ridge basalts. Earth Planet Sci Lett 62:239–257

    Google Scholar 

  • Ramos JI (1986) Behavior of multicomponent gas bubbles in glass melts. J Am Ceram Soc 69:149–154

    Google Scholar 

  • Richardson FD (1974) Physical chemistry of melts in metallurgy, vol 2, Academic Press, London

    Google Scholar 

  • Roedder E (1981) Fluid inclusions. Reviews in Mineralogy 12, Mineralogical Society of America

  • Roedder E, Weiblen PW (1971) Petrology of silicate melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents. Proc 2nd Lunar Sci Conf 507–528

  • Roscoe R (1952) The viscosity of suspensions of rigid spheres. Br J Appl Phys 3:267–269

    Google Scholar 

  • Ryan MP (1987) Elasticity and contractancy of Hawaiian olivine tholeiite and its role in the stability and structural evolution of subcaldera magma reservoirs and rift systems. US Geol Surv Prof Pap 1350:1397–1447

    Google Scholar 

  • Sakuyama M, Kushiro I (1979) Vesiculation of hydrous andesite melt and transport by separated vapor phase. Contrib Mineral Petrol 71:61–66

    Google Scholar 

  • Scholze H, Mulfinger HO (1959) Der Einbau des Wassers in Gläsern V. Die Diffusion des Wassers in Gläsern bei hohen Temperaturen. Glastechn Ber 32:381–386

    Google Scholar 

  • Silver L, Stolper E (1985) A thermodynamic model for hydrous silicate melts. J Geol 93:161–178

    Google Scholar 

  • Stolper E, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408

    Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volc Geotherm Res 3:1–37

    Google Scholar 

  • Sparks RSJ, Brazier S (1982) New evidence for degassing processes during explosive eruptions. Nature 295:218–220

    Google Scholar 

  • Swanson DA (1973) Pahoehoe flows from the 1996–71 Mauna Ulu eruption, Kilauea volcano. Geol Soc Am Bull 84:615–626

    Google Scholar 

  • Swanson DA, Fabbi BP (1973) Loss of volatiles during fountaining and flowage of basaltic lava at Kilauea volcano, Hawaii. US Geol Surv J Res 1:649–658

    Google Scholar 

  • Thorarinsson S (1968) On the rate of lava and tephra production and the upward migration of magma in four Icelandic eruptions. Geol Rundsch 567:705–718

    Google Scholar 

  • Toschev S (1973) Homogeneous nucleation. In: P Hartman (ed) Crystal growth: an introduction. North Holland Publ Co, pp 1–49

  • Turkdogan ET (1983) Physicochemical properties of molten slags and glasses. The Metals Society, London pp 515

    Google Scholar 

  • Vergniolle S, Jaupart C (1990) The dynamics of degrassing at Kilauea volcano (Hawaii). J Geophys Res 95:2793–2809

    Google Scholar 

  • Walker GPL (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51:199–209

    Google Scholar 

  • Walker D, Mullins Jr O (1981) Surface tension of natural silicate melts from 1200°–1500°C. Contrib Mineral Petrol 76:455–462

    Google Scholar 

  • Watson EB, Sneeringer MA, Ross A (1982) Diffusion of dissolved carbonate in magmas: experimental results and applications. Earth Planet Sci Lett 61:346–358

    Google Scholar 

  • Westrich HR (1982) Nucleation and growth rates of bubbles in hydrous obsidian. EOS Trans Am Geophys Union 45:1137

    Google Scholar 

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86:2971–3001

    Google Scholar 

  • Wright TL, Helz RT (1987) Recent advances in Hawaiian petrology and geochemistry. US Geol Surv Prof Pap 1350:625–640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottinga, Y., Javoy, M. The degassing of Hawaiian tholeiite. Bull Volcanol 53, 73–85 (1991). https://doi.org/10.1007/BF00265413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265413

Keywords

Navigation