Skip to main content
Log in

Selection for fertility in mice — the selection plateau and how to overcome it

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

A long-term experiment for increasing the traits first day litter size (LS1) and litter weight (LW1) was conducted with two populations for 33 generations. The selection plateau was reached in population DU-C (selection and estrus synchronization (h2 = 0.02±0.01); in population DU-K (selection) the plateau (h2 = 0.05±0.2) was nearly reached. Selection progress per generation was in LS1 b = 0.11±0.02; b = 0.12±0.04 (1st to 18th generation DU-K, DU-C) and b = 0.10±0.03; b = 0.07±0.05 (19th to 33rd generation, DU-K, DU-C) in LW1 b = 0.16±0.04 g; 0.19±0.07 g (DU-K, DU-C) b = 0.20±0.09 g; 0.001±0.09 g (DU-K, DU-C). Reverse and relaxe selection as well as systematic inbreeding was applied for 10 generations. Reverse selection yielded h2 = 0.28±0.11 (R-DU-K) and h2 = 0.17±0.05 (R-DU-C) and showed that there was still additive genetic variance. Relaxe selection did not cause alterations in the selection parameters, whereas inbreeding lead to inbred depressions (b = LS1 = −0.42±0.15; −0.45±0.12; b = LW1 = −1.13±0.20; −0.82±0.18 I-DU-K, I-DU-C). The plateau was based upon the heterozygote advantage. Several methods for overcoming the plateau were applied. A new selective useful variance could be created by crossing the plateau populations (h2 = 0.14±0.04). A short-term progress in overcoming the plateau (1st to 3rd generation) could be obtained by litter size standardization (LS = 388). Tandem selection (selection for body weight — BW42) as well as crossing of inbred strains were not suitable for overcoming the selection plateau. Altering the environmental conditions as a possibility for overcoming the plateau has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abplanalp H (1962) Modification of selection limits for egg number. Genet Res 3: 210–225

    Google Scholar 

  • Al-Murrani WK (1974) The limits to artifical selection. Anim Breed Abstr 42: 587–592

    Google Scholar 

  • Barria Perez NR (1976) Genetic selection of a plateaued population of mice selected for rapid post weaning gain. Diss Abstr Int B 36: 5963

    Google Scholar 

  • Barria N, Bradford GE (1981) Long term selection for rapid gain in mice. 1. Genetic analysis at the limit of response. J Anim Sci 52: 729–738

    Google Scholar 

  • Bell AE (1982a) Utilization on non additive gene effects. Experimental results from laboratory and domestic animals. Genetique quant et appl des popul Croisees. Toulouse, INRA-Publ, pp 108–128

    Google Scholar 

  • Bell AE (1982b) Selection for heterosis-results with laboratory and domestic animals. In: 2nd World Cong Genet Appl Livestock Prod, vol 6. Madrid, pp 202–227

  • Bell AE, Moore CH, Warren DC (1955) The evaluation of new methods for the improvement of quantitative characteristics. Cold Spring Harbor Symp Quant Biol 20: 197–212

    Google Scholar 

  • Brown WP, Bell AE (1980) An experimental comparison of selection alternatives to plateaued response. Genetics 94: 477–496

    Google Scholar 

  • Bünger L, Schüler L, Renne U, Kupatz B (1982) Selektion auf Wachstum bei der Labormaus unter den Bedingungen der Brunstsynchronisation — direkter Selektionserfolg und korrelierter Selektionseffekt auf die Wurfgröße. Arch Exp Vet-Med 36: 641–646

    Google Scholar 

  • Bünger L, Schüler L, Kupatz B, Renne U (1983) Zur Selektion auf Wachstum nach vorheriger Fruchtbarkeitsselektion bei Labormäusen. Arch Tierzucht 27: 183–191

    Google Scholar 

  • Eisen EJ (1978) Single-trait and antagonistic index selection for litter size and body weight in mice. Genetics 88: 781–811

    Google Scholar 

  • Eisen EJ (1980) Conclusions from long-term selection experiments with mice. Z Tierzucht Züchtungsbiol 97: 305–319

    Google Scholar 

  • Eisen EJ, Legates JE, Robison OW (1970) Selection for 12-day litter weight in mice. Genetics 64: 511–532

    Google Scholar 

  • Eklund J (1970) Genetic analysis of a selected strain of mice, plateaued by litter size. Diss Abstr Int B 36: 5966

    Google Scholar 

  • Eklund J, Bradford GE (1977) Genetic analysis of a strain of mice plateaued for litter size. Genetics 85: 529–542

    Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86: 293–298

    Google Scholar 

  • Falconer DS (1960) Selection of mice for growth on high and low plans of nutrition. Genet Res 1: 91–113

    Google Scholar 

  • Falconer DS (1971) Improvement of litter size in a strain of mice at a selection limit. Genet Res 17: 215–235

    Google Scholar 

  • Falconer DS, King JWB (1953) A study of selection limits in mice. J Genet 51: 561–581

    Google Scholar 

  • Hanrahan JP, Eisen EJ (1974) Genetic variation in litter size and 12-day weight in mice and their relationships with post-weaning growth. Anim Prod 19: 13–23

    Google Scholar 

  • Hill WG (1972) Estimation of realized heritabilities from selection experiments. 2. Selection in one direction. Biometrics 28: 767–780

    Google Scholar 

  • Kress DD (1975) Results from long-term selection experiments relative to selection limits. Genet Lect 4: 253–271

    Google Scholar 

  • Roberts RC (1966a) The limits to artifical selection for body weight in the mouse. 1. The limit attained in early experiments. Genet Res 8: 347–360

    Google Scholar 

  • Roberts RC (1966b) The limit to artifical selection to body weight in the mouse. 2. The genetic nature of the limits. Genet Res 8: 361–375

    Google Scholar 

  • Roberts RC (1967a) The limit to artifical selection for body weight in the mouse. 3. Selection from crosses between previously selected lines. Genet Res 9: 73–85

    Google Scholar 

  • Roberts RC (1967b) The limit to artifical selection to body weight in the mouse. 4. Sources of new genetic variance irradiation and out crossing. Genet Res 9: 87–98

    Google Scholar 

  • Roberts RC (1974) Selection limits in the mouse and their relevance to animals breeding. In: 1th World Cong Genet Appl Livestock Prod. Madrid, pp 493–509

  • Schüler L (1976) Die Selektion auf Komponenten der Fruchtbarkeit unter den Bedingungen der Zyklussynchronisation bei der Labormaus. 1. Die Ergebnisse der Selektion und der gestagenen Synchronisation. Arch Tierzucht 19: 235–242

    Google Scholar 

  • Schüler L (1979) Die Selektion auf Komponenten der Fruchtbarkeit unter den Bedingungen der Zyklussynchronisation bei der Labormaus. 5. Der korrelierte Selektionserfolg auf die Belastbarkeit. Arch Tierzucht 22: 441–451

    Google Scholar 

  • Schüler L (1982) Untersuchungen mit Modelltieren zu den Wechselbeziehungen der Fitnesskomponenten Fruchtbarkeit, Wachstum und Belastbarkeit. Arch Tierzucht 25: 477–485

    Google Scholar 

  • Schüler L, Bachnick B (1977) Die Selektion auf Komponenten der Fruchtbarkeit unter den Bedingungen der Zyklussynchronisation bei der Labormaus. 2. Der korrelierte Selektionserfolg in den Merkmalen der Wurfentwicklung. Arch Tierzucht 20: 437–445

    Google Scholar 

  • Schüler L, Bachnick B (1978) Die Selektion auf Komponenten der Fruchtbarkeit unter den Bedingungen der Zyklussynchronisation bei der Labormaus. 3. Der korrelierte Selektionserfolg in den Pubertätsmerkmalen. Arch Tierzucht 21: 277–284

    Google Scholar 

  • Schüler L, Renne U, Borodin PM, Bünger L, Kupatz B (1983) Der Einfluß der genetischen Differenzierung und von Belastung auf die Kombinationseffekte nach Kreuzung von Fruchtbarkeits- und Wachstumspopulationen bei der Labormaus. Arch Tierzucht 26: 397–404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüler, L. Selection for fertility in mice — the selection plateau and how to overcome it. Theoret. Appl. Genetics 70, 72–79 (1985). https://doi.org/10.1007/BF00264485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00264485

Key words

Navigation