Skip to main content
Log in

Germinal development in Philophthalmus megalurus (Cort, 1914) (Trematoda: Digenea)

  • Published:
Zeitschrift für Parasitenkunde Aims and scope Submit manuscript

Summary

The life cycle of Philophthalmus megalurus includes a minimum of five polymorphic generations: the hermaphroditic adult in the conjunctival sacs of birds, a paedogenetic miracidium which develops in the egg, and the sporocyst, mother redia, and daughter redia which parasitize the snail host. Daughter rediae produce a few granddaughter rediae first and then cercariae. The diploid chromosome number is 20 and gametogenesis in the adult is typical with 10 bivalents appearing during the first maturation division of gametocytes. In all generations, an unequal first cleavage produces a smaller propagatory, and a larger somatic cell. Unequal division of the propagatory cell again results in a larger somatic and a smaller daughter propagatory cell from which the sporocyst develops within the miracidium before the egg hatches. In other generations, repeated unequal division of the daughter propagatory cell results in small, dark germinal cells which may multiply by mitosis. They are interpreted as oögonia which transform directly to oöcytes in all generations except cercarial embryos. In that process, each undergoes meiotic prophase to diakinesis with the appearance of 10 bivalent chromosomes, then returns to interphase, grows, and becomes the large “germinal cell” typical of sporocysts and rediae of trematodes. Each oöcyte cleaves without polar body formation to form an embryo of the next generation. Reproduction in the germinal sacs accordingly is diploid parthenogenesis and polyembryony is not involved. The term “larval trematodes” for generations reproducing in the molluscan host is inaccurate and should be restricted to miracidia and cercariae, the only stages that undergo metamorphosis.

Zusammenfassung

Der Lebenszyklus von Philophthalmus megalurus schließt im Minimum fünf polymorphe Generationen ein:

  1. 1.

    die hermaphroditen Adulten im Konjunktivalsack der Vögel,

  2. 2.

    das sich im Ei entwickelnde paedogenetische Miracidium,

  3. 3.

    die Sporocyste,

  4. 4.

    die Mutterredie,

  5. 5.

    die Tochterredie, die in Schnecken parasitiert.

Die Tochterredien erzeugen zuerst einige Generationen von Enkelredien später jedoch Cercarien. Der diploide Satz besteht aus 20 Chromosomen und die Gametogenesis der erwachsenen Würmer weist während der ersten Reifeteilung im typischen Fall 10 Paar von Chromosomen auf. In allen Generationen werden durch eine inäquale erste Teilung eine kleinere Geschlechtszelle und eine größere somatische Zelle gebildet. Erneute ungleiche Teilungen der Geschlechtszelle führt wieder zu einer größeren somatischen und einer kleineren Tochterkeimzelle, aus der sich später im Miracidium die Sporocyste entwickelt, bevor die Larve schlüpft. In den folgenden Generationen entstehen wieder durch wiederholte ungleiche Teilungen der Tochterkeimzellen kleine dunkle Keimzellen, die sich mitotisch teilen. Sie werden als Oogonien gedeutet, die sich mit Ausnahme der Cercarien-Embryonen in allen Generationen direkt zu Oocyten umbilden. Bei diesem Prozeß läuft die Meiose bis zur Diakinese ab, wobei 10 bivalente Chromosomen in Erscheinung treten. Es kommt dann zur Ausbildung des Interphasekerns, zu fortschreitendem Wachstum und Ausbildung der typischen großen „Keimzellen“ der Trematoden in Sporocysten und Redien. Jede Oocyte teilt sich ohne Bildung eines Polkörpers und bildet einen Embryo der nächsten Generation aus. Dementsprechend stellt die Vermehrung im Keimsack eine diploide Parthenogenese dar; Polyembryonie ist nicht eingeschlossen. Der Ausdruck „larvale Trematoden“ für die Generationen, die sich in dem Schneckenwirt vermehren, ist ungenau und sollte auf Miracidien und Cercarien, die einzigen Stadien, die eine Metamorphose durchmachen, beschränkt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alicata, J. E.: Life cycle and developmental stages of Philophthalmus gralli in the intermediate and final hosts. J. Parasit. 48, 47–54 (1962).

    Google Scholar 

  • Anderson, M. G.: Gametogenesis in the primary generation of a digenetic trematode, Proterometra macrostoma Horsfall, 1933. Trans. Amer. micr. Soc. 54, 271–297 (1935).

    Google Scholar 

  • Bednarz, S.: The developmental cycle of germ-cells in Fasciola hepatica L. 1758 (Trematodes, Digenea). Zoologica Poloniae 12, 439–466 (1962).

    Google Scholar 

  • Britt, H. G.: Chromosomes of digenetic trematodes. Amer. Naturalist 81, 276–296 (1947).

    Google Scholar 

  • Brooks, F. G.: Studies on the germ cell cycle of trematodes. Amer. J. Hyg. 12, 299–340 (1930).

    Google Scholar 

  • Cable, R. M.: Studies on the germ-cell cycle of Cryptocotyle lingua. II. Germinal development in the larval stages. Quart. J. micr. Sci. 76, 573–614 (1934).

    Google Scholar 

  • — Thereby hangs a tail. J. Parasit. 51, 3–12 (1965).

    Google Scholar 

  • Chen, P. D.: The germ cell cycle in the trematode, Paragonimus kellicotti Ward. Trans. Amer. micr. Soc. 56, 208–236 (1937).

    Google Scholar 

  • Ching, H. L.: The development and morphological variation of Philophthalmus gralli Mathias and Leger, 1910, with a comparison of species of Philophthalmus Looss, 1899. Proc. helminth. Soc. Wash. 28, 130–138 (1961).

    Google Scholar 

  • Ciordia, H.: Cytological studies of the germ cycle of the trematode family Bucephalidae. Trans. Amer. micr. Soc. 75, 103–116 (1956).

    Google Scholar 

  • Cohen, I.: Sudan Black B-a new stain for chromosome smear preparations. Stain Technol. 24, 177–184 (1949).

    Google Scholar 

  • Cort, W. W., D. J. Ameel, and A. van der Woude: Germinal development in the sporocysts and rediae of the digenetic trematodes. Exp. Parasit. 3, 185–225 (1954).

    Google Scholar 

  • Dhingra, O. P.: Spermatogenesis of a digenetic trematode, Cyclocoelum bivesiculatum. Res. Bull. Panjab Univ., Zool. 61, 159–168 (1954).

    Google Scholar 

  • — Spermatogenesis of a digenetic trematode Gastrothylax crumenifer. Res. Bull. Panjab Univ., Zool. 65, 11–17 (1955).

    Google Scholar 

  • Faust, E. C.: Life history studies on Montana trematodes. Illinois Biol. Monogr. 4, 7–120 (1917).

    Google Scholar 

  • Ginetsinskaya, T. A.: The nature of trematode life-cycles (Russian text with English summary). Vest. leningr. gos. Univ., Ser. biol. 20, 5–13 (1965).

    Google Scholar 

  • Gresson, R. A. R.: Oögenesis in hermaphroditic Digenea (Trematoda). Parasitology 54, 409–421 (1964).

    Google Scholar 

  • Griffen, A. B.: A late pachytene chromosome map of the male mouse. J. Morph. 96, 123–144 (1955).

    Google Scholar 

  • Guilford, H. G.: Gametogenesis in Heronimus chelydrae MacCallum. Trans. Amer. micr. Soc. 74, 182–190 (1955).

    Google Scholar 

  • — Observations on the development of the miracidium and the germ cell cycle in Heronimus chelydrae MacCallum (Trematoda). J. Parasit. 44, 64–74 (1958).

    Google Scholar 

  • Hyman, L. H.: Platyhelminthes and Rhynchocoela. The invertebrates, vol. 2, New York: McGraw-Hill 1951.

    Google Scholar 

  • Ishii, Y.: Studies on the development of Fasciolopsis buski 1. Development of the eggs outside the host. Taiwan Igakkwai Zasshi, Taihoku 33, 349–378 (1934).

    Google Scholar 

  • James, B. L.: The life cycle of Parvatrema homoeotecnum sp. nov. (Trematoda: Digenea) and a review of the family Gymnophallidae Morozov, 1955. Parasitology 54, 1–41 (1964).

    Google Scholar 

  • Jordan, H. E., and E. E. Byrd: The life cycle of Brachycoelium mesorchium Byrd, 1937 (Trematoda: Digenea: Brachycoelliinae). Z. Parasitenk. 29, 61–84 (1967).

    Google Scholar 

  • Markell, E. K.: Gametogenesis and egg shell formation in Probolitrema californiense Stunkard, 1935 (Trematoda: Gorgoderidae). Trans. Amer. micr. Soc. 62, 27–56 (1943).

    Google Scholar 

  • Narbel-Hofstetter, M.: Les altérations de la méiose chez les animaux parthénogénétique. Protoplasmatologia, vol. 6 (F 2). Wien: Springer 1964.

    Google Scholar 

  • Pagliai, A. M.: La maturazione dell'uovo partenogenetico e dell'uovo anfigonico in Brevicoryne brassicae. Caryologia 15, 537–544 (1962).

    Google Scholar 

  • Premavati: Cercaria multiplicata n. sp. from the snail Melanoides tuberculatus (Muller). J. zool. Soc. India 7, 13–24 (1955).

    Google Scholar 

  • Rossbach, E. J. A.: Beiträge zur Anatomie und Entwicklungsgeschichte der Redien. Z. wiss. Zool. 84, 361–445 (1906).

    Google Scholar 

  • Sewell, R. B. S.: Cercariae indicae. Indian J. med. Res. 10 (Suppl.), 1–370 (1922).

    Google Scholar 

  • Sinitsin, D. F.: The parthenogenetic generation of the trematodes and their descendants in the Black Sea mollusks (Russian text). Mém. Acad. Imp. Sc. St.-Pétersb. Cl. Phys.-Math. VIII. s., 30, 127 pp (1911).

  • Suomalainen, E.: Parthenogenesis in animals. Advances in genetics, vol. 3. New York: Academic Press 1950.

    Google Scholar 

  • Szidat, L.: Über eine ungewöhnliche Form parthenogenetischer Vermehrung bei Metacercarien einer Gymnophallus-Art aus Mytilus platensis, Gymnophallus australis n. sp. des Südatlantik. Z. Parasitenk. 22, 196–213 (1962).

    Google Scholar 

  • West, A. F.: Studies on the biology of Philophthalmus gralli Mathis and Leger, 1910 (Trematoda: Digenea). Amer. Midl. Nat. 66, 363–383 (1961).

    Google Scholar 

  • White, M. J. D.: Animal Cytology and Evolution. Cambridge: University Press 1945.

    Google Scholar 

  • Willey, C. H., and S. Koulish: Development of germ cells in the adult stage of the digenetic trematode Gorgoderina attenuata Stafford, 1902. J. Parasit. 36, 67–79 (1950).

    Google Scholar 

  • Woodhead, A. E.: Germ-cell development in the first and second generations of Schistosomatium douthitti (Cort, 1914) Price, 1931 (Trematoda: Schistosomatidae). Trans. Amer. micr. Soc. 76, 173–176 (1957).

    Google Scholar 

  • Woude, A., van der: Germ cell cycle of Megalodiscus temperatus (Stafford, 1905) Harwood, 1932 (Paramphistomidae:Trematoda). Amer. Midl. Nat. 51, 172–202 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a thesis for the Ph. D. degree conferred on the first author by Purdue University, January, 1968. This study was supported by a David E. Ross Fellowship, Purdue Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, G.M., Cable, R.M. Germinal development in Philophthalmus megalurus (Cort, 1914) (Trematoda: Digenea). Z. F. Parasitenkunde 31, 211–231 (1968). https://doi.org/10.1007/BF00259703

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00259703

Keywords

Navigation