Skip to main content
Log in

Solution structure of human plasma fibronectin as a function of NaCl concentration determined by small-angle X-ray scattering

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The structure of human plasma fibronectin in 50 mM Tris-HCl buffer, pH 7.4, containing varying concentrations of NaCl, has been investigated using the small-angle X-ray method.

Below 0.3 M NaCl the overall structure of the molecule is disc-shaped; at 0 M NaCl the axial ratio of the disc is about 1:7 and between 0.1 M to 0.3 M it is slightly more asymmetric, with an axial ratio of 1:10.

At about 0.3 M NaCl there is a reversible transition to a more open structure, and, from 0.3 M up to 1.1 M NaCl the small-angle X-ray data can be explained by models consisting of ensembles of flexible, non-overlapping, bead-chains generated by a Monte Carlo procedure. Within this concentration range there is a gradual increase in the stiffness of the chains, as well as a decrease in bead radius, which indicates that the molecule becomes more open when the NaCl concentration is increased.

The transition to a more open structure is also demonstrated by the average radius of gyration which increases gradually from 8.26 nm at 0 M NaCl to 8.75 nm at physiological or near-physiological conditions, and up to 16.2 nm at 1.1 M NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

hpFN:

human plasma fibronectin

SAXS:

smallangle X-ray scattering

Tris :

tris (hydroxymethyl) aminomethane

DTT:

dithiothreitol

BA:

benzamidine hydrochloride

PMSF:

phenylmethylsulfonyl fluoride

References

  • Akiyama SK, Yamada KM (1986) Fibronectin. Adv Enzymol 59:1–57

    Google Scholar 

  • Creighton TE (1984) Proteins, structures and molecular properties. WH Freeman, New York

    Google Scholar 

  • Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Physik 46:809–823

    Article  CAS  Google Scholar 

  • Debye P (1947) Molecular-weight determination by light scattering. J Phys Colloid Chem 51:18–32

    Article  CAS  Google Scholar 

  • Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, Timpl R (1981) Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol 150:97–120

    Article  CAS  Google Scholar 

  • Erickson HP, Carrell NA (1983) Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem 258:14539–14544

    CAS  PubMed  Google Scholar 

  • Goldstein H (1959) Classical mechanics. Addison-Wesley, Reading, Massachusetts, USA

    Google Scholar 

  • Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley, New York

    Google Scholar 

  • Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4:1755–1759

    Article  CAS  Google Scholar 

  • Koteliansky VE, Glukhova MA, Bejanian MV, Smirnov VN, Filimonov VV, Zalite OM, Venyaminov SY (1981) A study of the structure of fibronectin. Eur J Biochem 119:619–624

    Article  CAS  Google Scholar 

  • Kratky O, Pilz I, Schmitz PJ (1966) Absolute intensity measurement of small angle X-ray scattering by means of a standard sample. J Colloid Interface Sci 21:24–34

    Article  CAS  Google Scholar 

  • Kratky O, Leopold H, Stabinger H (1969) Dichtemessungen an Flüssigkeiten und Gasen auf 10-6 g/cm3 bei 0.6 cm3 Präparatvolumen. Z Angew Physik 27:273–277

    CAS  Google Scholar 

  • Kratky O, Leopold H, Seidler H-P (1971) Röntgen-Kleinwinkelkamera mit Monitor. Z Angew Physik 31:49–50

    CAS  Google Scholar 

  • Lai C-S, Tooney NM, Ankel EG (1984) Structure and flexibility of plasma fibronectin in solution: Electron spin resonance spin-label, circular dichroism, and sedimentation studies. Biochemistry 23:6393–6397

    Article  CAS  Google Scholar 

  • Markovic Z, Lustig A, Engel J, Richter H, Hörmann H (1983) Shape and stability of fibronectin in solutions of different pH and ionic strength. Hoppe-Seyler's Z Physiol Chem 364: 1795–1804

    Article  CAS  Google Scholar 

  • McDonagh J, Ed (1985) Plasma fibronectin, structure and function. Marcel Dekker, New York.

    Google Scholar 

  • Mosesson MW, Chen AB, Huseby RM (1975) The coldinsoluble globulin of human plasma: Studies of its essential structural features. Biochim Biophys Acta 386:509–524

    Article  CAS  Google Scholar 

  • NAG-Fortran manual (1983) Numerical Algorithms Group Ltd, NAG Central office, Mayfield House, 256 Banbury Road, Oxford OX2 7DE, UK

  • von Neumann J (1951) Various techniques used in connection with random digits. Natl Bur Stand, Appl Math Series 12:36–38

    Google Scholar 

  • Odermatt E, Engel J, Richter H, Hörmann H (1982) Shape, conformation and stability of fibronectin fragments determined by electron microscopy, circular dichroism and ultracentrifugation. J Mol Biol 159:109–123

    Article  CAS  Google Scholar 

  • Price TM, Rudee ML, Pierschbacher M, Ruoslahti E (1982) Structure of fibronectin and its fragments in electron microscopy. Eur J Biochem 129:359–363

    Article  CAS  Google Scholar 

  • Rocco M, Carson M, Hantgan R, McDonagh J, Hermans J (1983) Dependence of the shape of the plasma fibronectin molecule on solvent composition. Ionic strength and glycerol content. J Biol Chem 258:14545–14549

    CAS  PubMed  Google Scholar 

  • Rocco M, Infusini E, Daga MG, Gogioso L, Cuniberti C (1987) Models of fibronectin. EMBO J 6:2343–2349

    Article  CAS  Google Scholar 

  • Schellman JA (1974) Flexibility of DNA. Biopolymers 13:217–226

    Article  CAS  Google Scholar 

  • Sjöberg B (1978) A general, weighted least-squares method for the evaluation of small-angle X-ray data without desmearing. J Appl Crystallogr 11:73–79

    Article  Google Scholar 

  • Sjöberg B, Pap S, Österlund E, Österlund K, Vuento M, Kjems J (1987) Solution structure of human plasma fibronectin using small-angle X-ray and neutron scattering at physiological pH and ionic strength. Arch Biochem Biophys 255:347–353

    Article  Google Scholar 

  • Skorstengaard K, Jensen MS, Sahl P, Petersen TE, Magnusson S (1986) Complete primary structure of bovine plasma fibronectin. Eur J Biochem 161:441–453

    Article  CAS  Google Scholar 

  • Vuento M, Vaheri A (1979) Purification of fibronectin from human plasma by affinity chromatography under nondenaturing conditions. Biochem J 183:331–337

    Article  CAS  Google Scholar 

  • Yamada KM (1983) Cell surface interactions with extracellular materials. Annu Rev Biochem 52:761–799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöberg, B., Eriksson, M., Österlund, E. et al. Solution structure of human plasma fibronectin as a function of NaCl concentration determined by small-angle X-ray scattering. Eur Biophys J 17, 5–11 (1989). https://doi.org/10.1007/BF00257140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00257140

Key words

Navigation