Skip to main content
Log in

Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A fluorescence correlation experiment for measurement of rotational diffusion in the nanosecond time scale is described. Using this method, the rotational diffusion coefficient of bovine carbonic anhydrase B labelled with tetramethylrhodamine isothiocyanate was estimated to be D r=(1.14±0.15)×107 s-1 at 22°C. The experiment is based on a cw argon ion laser, a microfluorimeter with local solution flow inside the sample cell, and two photon detectors. The fluorescence intensity autocorrelation function in the nanosecond time range is computed with the help of a time-to-amplitude converter and a multichannel pulse-amplitude analyser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragon SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14: 119–138

    Google Scholar 

  • Aragon SR, Pecora R (1976) Fluorescence correlation spectroscopy as a probe of molecular dynamics. J Chem Phys 64: 1791–1803

    Google Scholar 

  • Ehrenberg M, Rigler R (1974) Rotational brownian motion and fluorescence intensity fluctuations. Chem Phys 4: 390–401

    Google Scholar 

  • Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW (1977) Lateral diffusion in planar lipid bilayers. Science 195: 305–306

    Google Scholar 

  • Kask P, Piksarv P, Mets Ü (1985) Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur Biophys J 12: 163–166

    Google Scholar 

  • Koppel D (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10: 1938–1945

    Google Scholar 

  • Lippmaa ET, Olivson AI, Jarvet JI-H, Aguraiuja RK (1983) Study on bovine carbonic anhydrase B by [13C] NMR spectroscopy. Mol Biol (U.S.S.R.) 17: 484–491

    Google Scholar 

  • Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29: 704–708

    Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13: 29–61

    Google Scholar 

  • Magde D, Webb WW, Elson EL (1978) Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17: 361–376

    Google Scholar 

  • Rigler R, Grasselli P, Ehrenberg M (1979) Fluorescence correlation spectroscopy and application to the study of brownian motion of biopolymers. Phys Scr 19: 486–490

    Google Scholar 

  • Sirk A, Kask P, Kändler T, Karu T, Puskar J, Lippmaa E (1979) Clip-correlator for fluorescence correlation experiments. Proc Acad Sci Estonian SSR Phys Math 28: 227–232

    Google Scholar 

  • Sorscher SM, Bartholomew JC, Klein MP (1980) The use of fluorescence correlation spectroscopy to probe chromatin in the cell nucleus. Biochim Biophys Acta 610: 28–46

    Google Scholar 

  • Yguerabide J, Epstein HF, Stryer L (1970) Segmental flexibility in an antibody molecule. J Mol Biol 51: 573–590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kask, P., Piksarv, P., Mets, Ü. et al. Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B. Eur Biophys J 14, 257–261 (1987). https://doi.org/10.1007/BF00256359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00256359

Key words

Navigation