Skip to main content
Log in

Oxidation of arsenopyrite (FeAsS) in acid Part II: Stoichiometry and reaction scheme

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of arsenopyrite (FeAsS) in 0.01 iv1 chloride solution at pH 2 has been investigated and the effect of electrode potential, temperature and arsenopyrite mineral composition on the reaction stoichiometry studied. Iron, arsenic and sulfur products were formed in the ratio 1 : 1 : 1, for all conditions for arsenic deficient and stoichiometric arsenopyrite. Product speciation was dependent on temperature and potential, but not on arsenopyrite composition. At 25°C, Fe(ii), Fe(iii), As(iii), As(v), S, SO 2−4 and S(x) (which could be a polythionate such as tetrathionate or pentathionate) were formed and ∼9e produced per mol of arsenopyrite oxidized. At 75°C, practically no S(x) was formed and 7.5 e produced per mol of arsenopyrite oxidized. A qualitative reaction scheme, based on the decomposition of thiosulfate to polythionate in the presence of As(iii), is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Fernandez, H. G. Linge and M. W. Wadsley, J. Appl. Electrochem. 26 (1996) 575.

    Google Scholar 

  2. S. R. La Brooy, H. G. Linge and G. S. Walker, Minerals Engineering 7 (1994) 1213.

    Google Scholar 

  3. H. G. Linge and W. G. Jones, ibid. 6 (1993) 873.

    Google Scholar 

  4. G. M. Kostina and A. S. Chernyak, J. Appl. Chem. USSR 49 (1976) 1566.

    Google Scholar 

  5. Idem, ibid. 50 (1977) 2571.

    Google Scholar 

  6. Idem, ibid. 52 (1979) 1457.

    Google Scholar 

  7. M. J. V. Beattie and G. W. Poling, Int. J. Miner. Process. 20 (1987) 87.

    Google Scholar 

  8. A. N. Buckley and G. W. Walker, Appl. Surf. Sci. 35 (1988/89) 227.

    Google Scholar 

  9. P. Bhakta, J. W. Langhans and K. P. V. Lei, Report of Investigation RI 9258, US Bureau of Mines (1989).

  10. J. B. Hiskey and V. Sanchez, in ‘Arsenic Metallurgy Fundamentals and Application’, TMS-AIME, Warrendale, PA (1988) p. 59.

    Google Scholar 

  11. V. Sanchez and J. B. Hiskey, Met. Trans. B 19 (1988) 943.

    Google Scholar 

  12. V. Sanchez and J. B. Hiskey, in ‘Electrochemistry in Mineral and Metal Processing’, vol 2, Electrochemical Society, NJ, (1988) p. 264.

    Google Scholar 

  13. V. Sanchez and J. B. Hiskey, Miner. & Metall. Process. 8 (1991) 1.

    Google Scholar 

  14. V. G. Papangelakis and G. P. Demopoulos, Can. Met. Quart. 29 (1990) 1.

    Google Scholar 

  15. Idem, ibid. 29 (1990) 13.

    Google Scholar 

  16. J. T. Woodcock, Proc. Aus. I.M.M. 198 (1961) 47.

    Google Scholar 

  17. H. G. Linge, Hydrometallurgy 2 (1976) 51.

    Google Scholar 

  18. R. E. Meyer, J. Electroanalyt. Chem. Interfac. Electrochem 101 (1979) 59.

    Google Scholar 

  19. R. T. Lowson, Chem. Rev. 82 (1982) 461.

    Google Scholar 

  20. E. Peters and F. M. Doyle, in ‘Challenges in Mineral Processing’, SME, Littleton, (1989) chapter 31.

  21. J. Dutrizac, Hydrometallurgy 29 (1992) 1.

    Google Scholar 

  22. B. J. Reedy, J. K. Beattie and R. T. Lowson, Spectrochimica Acta 46A (1990) 1513.

    Google Scholar 

  23. G. W. Walker, P. E. Richardson and A. N. Buckley, Int. J. Mineral Processing 25 (1989) 153.

    Google Scholar 

  24. F. K. Crundwell, Hydrometallurgy 21 (1988) 155.

    Google Scholar 

  25. K. Osseo-Asare, ibid. 29 (1992) 61.

    Google Scholar 

  26. R. T. Shuey, ‘Semiconducting Ore Minerals’, Elsevier Scientific, Amsterdam (1975).

    Google Scholar 

  27. P. G. Fernandez, PhD thesis, Curtin University of Technology, Perth (1992).

    Google Scholar 

  28. J. Barrett, M. N. Hughes and A. Russell, in ‘Randol Gold Forum Square Valley `90’, Randol International, Golden, Co. (1990) p. 135.

  29. J. Barrett, M. N. Hughes, G.I. Karavaiko and P. A. Spencer, ‘Metal Extraction by Bacterial Oxidation of Minerals’, Ellis Horwood, London (1993).

    Google Scholar 

  30. L. K. Tan and J. E. Dutrizac, Anal. Chem. 57 (1985) 1027; 57 (1985) 2615.

    Google Scholar 

  31. W. H. Kao and T. Kuwana, J. Electroanalyt. Chem. Interfac. Electrochem. 169 (1984) 167; 193 (1985) 145.

    Google Scholar 

  32. J. S. Yates and H. C. Thomas, J.A.C.S. 78 (1956) 3950.

    Google Scholar 

  33. E. Najdeker and E. Bishop, J. Electroanalyt. Chem. Interfac. Electrochem. 41 (1973) 79.

    Google Scholar 

  34. D. M. Yost and H. Russell Jr., in ‘Systematic Inorganic Chemistry of the Fifth and Sixth Group Nonmetallic Elements’, Prentice Hall, New York (1944) p. 387.

    Google Scholar 

  35. D. Lyons and G. Nickless, in ‘Inorganic Sulphur Chemistry’, Elsevier Scientific Amsterdam (1968) p. 509.

  36. F. A. Cotton and G. Wilkinson, ‘Advanced Inorganic Chemistry — A Comprehensive Text’, Wiley Eastern, New Delhi (1985).

    Google Scholar 

  37. R. K. Eremenko and A. I. Brodsky, J. Gen. Chem. USSR 25 (1955) 1189.

    Google Scholar 

  38. P. D. Harvey and I. S. Butler, J. Raman Spectrosc. 17 (1986) 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, P.G., Linge, H.G. & Willing, M.J. Oxidation of arsenopyrite (FeAsS) in acid Part II: Stoichiometry and reaction scheme. J Appl Electrochem 26, 585–591 (1996). https://doi.org/10.1007/BF00253456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253456

Keywords

Navigation