Skip to main content
Log in

Oxidation of arsenopyrite (FeAsS) in acid Part I: Reactivity of arsenopyrite

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The oxidation reactivity of arsenopyrite FeAsS in dilute acid determines the recovery of gold from arsenopyritic gold ores by slurry electrolysis. Stoichiometric,sulfur- and arsenic- deficient arsenopyrite have practically the same oxidation rate. Arsenopyrite is covered with a metal deficient sulfide layer which appears to determine the restpotential of the electrode. This layer can be separately oxidized and reduced during bulk-oxidation of arsenopyrite. Arsenopyrite oxidation is accelerated by dissolved Na2SO4 and by high electrode potentials and solution acidity. The rate is controlled by a surface reaction with an apparent activation energy of 33kJmol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. La Brooy, H. G. Linge and G. S. Walker, Minerals Engineering 7 (1994) 1213.

    Google Scholar 

  2. H. G. Linge and W. G. Jones, ibid. 6 (1993) 873.

    Google Scholar 

  3. P. G. Fernandez, H. G. Linge and M. J. Willing, J. Appl. Electrochem. 26 (1996) 585.

    Google Scholar 

  4. H. G. Linge, 6th Aus. I. M. M. Extractive Metallurgy Conference Brisbane, July 1994, Aus.I.M.M. Melbourne (1994) p. 193.

  5. D. F. A. Koch, in ‘Modern Aspects of Electrochemistry’, vol 10 (edited by J. O'M. Bockris and B. E. Conway) Plenum, New York, (1975) p. 211.

    Google Scholar 

  6. R. T. Lowson, Chem. Rev. 82 (1982) 461.

    Google Scholar 

  7. J. Dutrizac, Hydrometallurgy 29 (1992) 1.

    Google Scholar 

  8. G. M. Kostina and A. S. Chernyak, J. Appl. Chem. USSR 49 (1976) 1566.

    Google Scholar 

  9. Idem, ibid. 50 (1977) 2571.

    Google Scholar 

  10. Idem, ibid. 52 (1979) 1457.

    Google Scholar 

  11. M. J. V. Beattie and G. W. Poling, Ing. J. Mineral Process. 20 (1987) 87.

    Google Scholar 

  12. G. K. Sisenov, V. A. Bogdanovskaya and M. R. Tarasevich, Soviet Electrochem. 24 (1988) 729.

    Google Scholar 

  13. J. B. Hiskey and V. Sanchez, in ‘Arsenic Metallurgy Fundamentals and Application’, TMS-AIME, Warrendale, PA (1988) p. 59.

    Google Scholar 

  14. V. Sanchez and J. B. Hiskey, Met. Trans. B 19 (1988) 943.

    Google Scholar 

  15. V. Sanchez and J. B. Hiskey, in ‘Electrochemistry in Mineral and Metal Processing’, vol. 2, Electrochemical Society, NJ, (1988) p. 264.

    Google Scholar 

  16. V. Sanchez and J. B. Hiskey, Min. & Metall. Process. 8 (1991) 1.

    Google Scholar 

  17. K. J. Jackson and J. D. H. Strickland, Trans. Met. Soc. AIME June (1958) 373

  18. V. G. Papangelakis and G. P. Demopoulos, Can. Met. Quart. 29 (1990) 13.

    Google Scholar 

  19. F. K. Crundwell, Hydrometallurgy 21 (1988) 155.

    Google Scholar 

  20. P. G. Fernandez, PhD thesis, Curtin University of Technology, Perth (1992).

    Google Scholar 

  21. N. Morimoto and L. A. Clark, Amer. Mineralogist 46 (1961) 1449.

    Google Scholar 

  22. G. H. Aylward and T. J. V. Findlay, ‘SI Chemical Data’, Wiley, New York (1974).

    Google Scholar 

  23. P. B. Barton, Geochimica et Cosmochimica Acta 33 (1969) 841.

    Google Scholar 

  24. W. W. Barker and T. C. Parks, ibid. 50 (1986) 2185.

    Google Scholar 

  25. R. von Blachnik, A. Hoppe and U. Winkel, Z. Anorg. Allg. Chem. 463 (1980) 78.

    Google Scholar 

  26. H. G. Linge, Hydrometallurgy 2 (1976) 51.

    Google Scholar 

  27. J. P. Arnold and R. M. Johnson, Talanta 16 (1969) 1991.

    Google Scholar 

  28. R. T. Shuey, ‘Semiconducting Ore Minerals’, Elsevier Scientific, Amsterdam (1975).

    Google Scholar 

  29. A. N. Buckley and G. W. Walker, Appl. Surf. Sci. 35 (1988/89) 227.

    Google Scholar 

  30. M. A. Blesa, P. J. Morando and A. E. Regazzoni, ‘Chemical Dissolution of Metal Oxides’, CRC Press, Boca Raton, FA (1994).

    Google Scholar 

  31. G. W. Walker, P. E. Richardson and A. N. Buckley, Int. J. Miner. Process. 25 (1989) 153.

    Google Scholar 

  32. K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press, New York (1967).

    Google Scholar 

  33. D. L. Jones and E. Peters, in ‘Extractive Metallurgy of Copper’, TMS-AIME, New York, (1976) p. 633.

    Google Scholar 

  34. J. E. Dutrizac and R. J. C. MacDonald, Met. Trans. 2 (1971) 2310.

    Google Scholar 

  35. T. Biegler and D. A. Swift, Electrochim. Acta 24 (1979) 415.

    Google Scholar 

  36. G. Springer, Trans. Inst. Min. Metall. 79 (1970) C11.

    Google Scholar 

  37. K. Osseo-Asare, Hydrometallurgy 29 (1992) 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, P.G., Linge, H.G. & Wadsley, M.W. Oxidation of arsenopyrite (FeAsS) in acid Part I: Reactivity of arsenopyrite. J Appl Electrochem 26, 575–583 (1996). https://doi.org/10.1007/BF00253455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253455

Keywords

Navigation