Skip to main content
Log in

Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A non-stationary spatial low pass filter was developed and implemented in combination with an accelerated non-linear curve fitting routine to create low noise-high contrast images of physiological parameters with dynamic positron emission tomography. The method was applied to 18F-2-fluoro-2-deoxyglucose (FDG) studies, and images of local blood volume, kinetic rate constants, precursor pool volume and glucose metabolism were generated. Noise reduction and contrast preservation was demonstrated in a simulated pie phantom and a study of a patient with a recent brain infarct. Considerably improvement in quantitative accuracy of pixel parameter values was observed in the phantom study in comparison with unprocessed or conventionally smoothed images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert NM, Eriksson L, Chang JY, Bergström M, Litton JE, Correia JA, Bohm C, Ackerman RH, Taveras JM (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 4:28–34

    Google Scholar 

  • Bergström M, Litton J, Eriksson L, Bohm C, Blomquist G (1982) Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr 6:365–372

    Google Scholar 

  • Bergström M, Eriksson L, Bohm C, Blomquist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7:42–50

    Google Scholar 

  • Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH (1977) Emission computer assisted tomography with singlephoton and positron annihilation photon emitters. J Comput Assist Tomogr 1:131–144

    Google Scholar 

  • Draper NR, Smith H (1981) Applied Regression Analysis. Second Edition. John Wiley & Sons. New York-Chichester-Brisbane-Toronto-Singapore

    Google Scholar 

  • Eriksson L, Bohm C, Kesselberg M, Blomquist G, Litton J, Widén L, Bergström M, Ericson K, Greitz T (1982) A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 29:539–543

    Google Scholar 

  • Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5:163–178

    Google Scholar 

  • Grant DA (1947) Additional tables for the probability of “runs” of correct responses in learning and problem solving. Psych Bull 44:276–279

    Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112

    Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51

    Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC, Wapenski JA, Grimm PD, Parker RG, Juillard G, Greenberg P (1984) A kinetic evaluation of blood brain barrier permeability in human brain tumors with (68Ga) EDTA and positron computed tomography. J Cereb Blood Flow Metab 4:507–515

    Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC (1986) Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: Studies in human brain tumors with PET. J Cereb Blood Flow Metab 6:170–183

    Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223

    Google Scholar 

  • Heiss WD, Herholz K, Böcher-Schwarz HG, Pawlik G, Wienhard K, Steinbrich W, Friedmann G (1986) PET, CT, and MR imaging in cerebrovascular disease. J Comput Assist Tomogr 10:903–911

    Google Scholar 

  • Herholz K, Patlak CS (1987) The influence of tissue heterogeneity on results of fitting nonlinear model equations to regional tracer uptake curves. With an application to compartmental models used in positron emission tomography. J Cereb Blood Flow Metab 7:214–229

    Google Scholar 

  • Herholz K, Ziffling P, Staffen W, Pawlik G, Hebold I, Wienhard K, Heiss WD (1987a) Characterization of brain tumors by parametric imaging of blood volume, FDG transport and metabolism. J Nucl Med 28:645

    Google Scholar 

  • Herholz K, Ziffling P, Staffen W, Wienhard K, Pawlik G, Heiss WD (1987b) Correlative studies of glucose availability, glucose metabolism, BBB permeability, and extracellular volume in human brain tumors with PET. J Cereb Blood Flow Metab [Suppl 1] 7:S 339

  • Herholz K, Ziffling P, Staffen W, Pawlik G, Wagner R, Wienhard K, Heiss WD (1988) Uncoupling of hexose transport and phosphorylation in human gliomas demonstrated by PET. Eur J Cancer Clin Oncol 24:1139–1150

    Google Scholar 

  • Hoffman EJ, Phelps ME (1986) Positron emission tomography: Principles and quantitation. In: Phelps ME, Mazziotta JC, Schelbert HR (eds) Positron Emission Tomography and Autoradiography. Principles and applications for the brain and heart. Raven Press, New York, pp 237–286

    Google Scholar 

  • Holden JE, Gatley SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RJ, Polcyn RE (1981) Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 22:1084–1088

    Google Scholar 

  • Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Nonivasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69-E82

    Google Scholar 

  • King MA, Doherty PW, Schwinger RB, Jacobs DA, Kidder RE, Miller TR (1983a) Fast count-dependent digital filtering of nuclear medicine images: Concise communication. J Nucl Med 24:1039–1045

    Google Scholar 

  • King MA, Doherty PW, Schwinger RB (1983b) A Wiener filter for nuclear medicine images. Med Phys 10:876–880

    Google Scholar 

  • King MA, Miller TR (1985) Use of a nonstationary temporal Wiener filter in nuclear medicine. Eur J Nucl Med 10:458–461

    Google Scholar 

  • King MA, Miller, TR, Doherty PW, Schwinger RB (1985) Stationary and nonstationary spatial domain Metz filtering using an array processor. J Nucl Med 26:111

    Google Scholar 

  • Miller TR, Sampathkumaran KS (1982) Digital filtering in nuclear medicine. J Nucl Med 23:66–72

    Google Scholar 

  • Nelson T, Lucignani G, Sokoloff L (1985) Measurement of brain deoxyglucose metabolism by NMR. Science 228:1329

    Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-Fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 6:371–388

    Google Scholar 

  • Raff U, Stroud DN, Hendee WR (1986) Improvement of lesion detection in scintigraphic images by SVD techniques for resolution recovery. IEEE Transaction on Medical Imaging 5:35–44

    Google Scholar 

  • Rowland SW (1979) Computer implementation of image reconstruction formulas. In: Herman GT (ed) Image Reconstruction from Projections. Implementation and applications. Springer, Berlin Heidelberg New York, pp 9–79

    Google Scholar 

  • Sasaki H, Kanno I, Murakami M, Shishido F, Uemura K (1986) Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. J Cereb Blood Flow Metab 6:447–454

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Todd-Pokropek A, Di Paola R (1982) The use fo computers for image processing in nuclear medicine. IEEE Transaction on Nucl Sci 29:1299–1309

    Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125

    Google Scholar 

  • Wong DF, Gjedde A, Wagner HN Jr (1986) Quantification of neuroreceptors in living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6:137–146

    Google Scholar 

  • Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Feindel W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr. J Comput Assist Tomogr 1:43–56

    Google Scholar 

  • Yuille DL (1978) A new approach to the smoothing of dynamic nuclear medicine data: Concise communication. J Nucl Med 19:836–844

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herholz, K. Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET. Eur J Nucl Med 14, 477–484 (1988). https://doi.org/10.1007/BF00252392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00252392

Key words

Navigation