Skip to main content
Log in

Fructose metabolism in Zymomonas mobilis

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

In the metabolism of fructose by Zymomonas, the ethanol yield is decreased due to the formation of dihydroxyacetone, mannitol and glycerol. The reduction of fructose to mannitol by an NADPH-dependent mannitol dehydrogenase is apparently coupled to the oxidation of glucose-6-phosphate by glucose-6-phosphate dehydrogenase, which exhibits higher activity with NADP than with NAD as cofactor. The relatively low cell yield on fructose can partly be explained by the loss of ATP in the formation of dihydroxyacetone and glycerol and partly by the toxic effect of dihydroxyacetone and acetaldehyde on the growth of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O (1981) Existence of a novel prosthetic group, PQQ, in membrane bound electron transport chain linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 130:179–183

    Google Scholar 

  • Anderson AJ, Dawes EA (1985) Regulation of glucose-6-phosphate dehydrogenase in Zymomonas mobilis CP 4. FEMS Microbiol Lett 27:23–27

    Google Scholar 

  • Barrow KD, Collins JG, Norton RS, Rogers PL, Smith GM (1984) 31 P nuclear magnetic resonance studies of the fermentation of glucose to ethanol by Zymomonas mobilis. J Biol Chem 259:5711–5716

    Google Scholar 

  • Belaich JP, Belaich A, Simonpietri P (1972) Uncoupling in bacterial growth: effect of pantothenate starvation on growth of Zymomonas mobilis. J Gen Microbiol 70:179–185

    Google Scholar 

  • Bergmeyer HU, Bernt E (1974) Fructose-1,6-diphosphate aldolase. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis, 2nd edn, vol 3. Verlag Chemie, Weinheim, Academic Press, Inc, New York London pp 1100–1103

    Google Scholar 

  • Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139:376–381

    Google Scholar 

  • Bringer-Meyer S, Scollar M, Sahm H (1985) Zymomonas mobilis mutants blocked in fructose utilization. Appl Microbiol Biotechnol 23:134–139

    Google Scholar 

  • Dawes EA, Ribbons DW, Rees DA (1966) Sucrose utilization by Zymomonas mobilis: formation of a levan. Biochem J 98:804

    Google Scholar 

  • Doelle HW (1982) Kinetic characteristics and regulatory mechanism of glucokinase and fructokinase from Zymomonas mobilis. Eur J Appl Microbiol Biotechnol 14:241–246

    Google Scholar 

  • Duine JA, Frank J, Van Zeeland JK (1979) Glucose dehydrogenase from Acientobacter calcoaceticus: A quinoprotein. FEBS Lett 108:443–446

    Google Scholar 

  • Lazdunski A, Belaich JP (1972) Uncoupling in bacterial growth: ATP pool variation in Zymomonas mobilis cells in relation to different uncoupling conditions of growth. J Gen Microbiol 70:187–197

    Google Scholar 

  • Leigh D, Scopes RK, Rogers PL (1984) A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 20:413–415

    Google Scholar 

  • Lundquist F (1974) Determination with aldehyde dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn, vol 3. Verlag Chemie, Weinheim, Academic Press, Inc, New York London, pp 1509–1513

    Google Scholar 

  • McGill DJ, Dawes EA (1971) Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J 125:1059–1068

    Google Scholar 

  • McGill DJ, Dawes EA, Ribbons DW (1965) Carbohydrate metabolism and growth yield coefficients of Zymomonas anaerobia. Biochem J 97:44P-45P

    Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84

    Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    Google Scholar 

  • Schreder K, Brunner R, Hampe R (1934) Die anaerobe und aerobe Gärung von Pseudomonas lindneri Kluyver in glucosehaltiger anorganischer Nährlösung. Biochim Z 273:223–242

    Google Scholar 

  • Torn-Diaz I, Jarn VK, Baratti J (1983) Effect of fructose concentration and aeration on ethanol production by Zymomonas mobilis. Biotechnol Lett 5:697–702

    Google Scholar 

  • Viikari L (1984a) Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl Microbiol Biotechnol 19:252–255

    Google Scholar 

  • Viikari L (1984b) Formation of sorbitol by Zymomonas mobilis. Appl Microbiol Biotechnol 20:118–123

    Google Scholar 

  • Viikari L, Gisler R (1986) By-products in the fermentation of sucrose by different Zymomonas strains. Appl Microbiol Biotechnol 23:240–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viikari, L., Korhola, M. Fructose metabolism in Zymomonas mobilis . Appl Microbiol Biotechnol 24, 471–476 (1986). https://doi.org/10.1007/BF00250326

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250326

Keywords

Navigation