Skip to main content
Log in

The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The neuronal composition of callosally projecting cells in cat visual cortex was determined with a combination of retrograde labelling and intracellular injection. Fluorescent tracers were stereotaxically injected into the proximity of the area 17/18 border, corresponding to the representation of the visual vertical meridian. In fixed slice preparations of homotopic regions of the contralateral hemisphere retrogradely labelled cells were filled with Lucifer Yellow. Of more than a hundred injected cells a morphological variety of pyramidal cells, located in cortical layers II–IV and VI, constituted the prevalent cell class in the contralateral projection. A minor proportion of spiny stellate cells was encountered in layer IV. Despite the presence of a contralaterally projecting smooth stellate cell, presumed to be a basket cell, it is concluded that the efferents to contralateral visual cortex predominantly arise from pyramidal and spiny stellate cells. Thus, in agreement with findings from anterograde degeneration studies, the interhemispheric pathway most likely conveys a direct excitatory input to postsynaptic target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent neuronal tracers which are transported over long distances. Neurosci Lett 18: 25–30

    Google Scholar 

  • Berlucchi G (1972) Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res 37: 371–392

    Google Scholar 

  • Berlucchi G, Rizzolatti G (1968) Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159: 308–310

    Google Scholar 

  • Berman NE, Payne BR (1983) Alterations in connections of the corpus callosum following convergent and divergent strabismus. Brain Res 274: 201–212

    Google Scholar 

  • Blakemore C, Diao Y, Pu M, Wang Y, Xiao Y (1983) Possible functions of the interhemispheric connexions between visual cortical areas in the cat. J Physiol 337: 331–349

    Google Scholar 

  • Buhl EH, Schlote W (1987) Intracellular lucifer yellow staining and electron microscopy of neurones in slices of fixed epitumourous human cortical tissue. Acta Neuropathol 75: 140–146

    Google Scholar 

  • Buhl EH, Singer W (1988a) The neuronal composition of callosally projecting cells in cat visual cortex. In: Elsner N, Barth FG (eds) Sense organs — interfaces between environment and behaviour. Proceedings of the 16th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 259

    Google Scholar 

  • Buhl EH, Singer W (1988b) The callosal projection in cat visual cortex: a combination of retrograde tracing and intracellular staining. Eleventh European Neuroscience Congress, Zürich. Eur J Neurosci S159

  • Catsicas S, Berbel PJ, Innocenti GM (1986) A combination of Golgi impregnation and fluorescent retrograde labeling. J Neurosci Meth 18: 325–332

    Google Scholar 

  • Catsicas S, Catsicas M, Clarke PGH (1987) Long-distance intraretinal connections in birds. Nature 326: 186–187

    Google Scholar 

  • Cipolloni PB, Peters A (1983) The termination of callosal fibres in the auditory cortex of the rat: a combined Golgi-electron microscope and degeneration study. J Neurocytol 12: 713–726

    Google Scholar 

  • Cynader M, Gardner J, Dobbins A, Leporé F, Guillemot J-P (1986) Interhemispheric communication and binocular vision: function and developmental aspects. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres — one brain: functions of the corpus callosum. Alan R Liss, New York, pp 189–209

    Google Scholar 

  • Cynader M, Leporé F, Guillemot J-P (1981) Inter-hemispheric competition during postnatal development. Nature 290: 139–140

    Google Scholar 

  • Elberger AJ (1981) Ocular dominance in striate cortex is altered by neonatal section of the posterior corpus callosum in the cat. Exp Brain Res 41: 280–291

    Google Scholar 

  • Elberger AJ (1986) The role of the corpus callosum in visual development. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres — one brain: functions of the corpus callosum. Alan R Liss, New York, pp 281–297

    Google Scholar 

  • Fisken RA, Garey LJ, Powell TPS (1975) The intrinsic, association and commissural connections of area 17 of the visual cortex. Philos Trans R Soc Lond B 272: 487–536

    Google Scholar 

  • Frost DO, Innocenti GM (1986) Effects of sensory experience on the development of visual callosal connections. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres — one brain: functions of the corpus callosum. Alan R Liss, New York, pp 255–266

    Google Scholar 

  • Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259: 364–381

    Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93: 420–433

    Google Scholar 

  • Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103: 171–187

    Google Scholar 

  • Hornung J-P, Garey LJ (1980) A direct pathway from thalamus to visual callosal neurons in cat. Exp Brain Res 38: 121–123

    Google Scholar 

  • Hornung J-P, Garey LJ (1981) The thalamic projection to cat visual cortex: ultrastructure of neurons identified by Golgi impregnation or retrograde horseradish peroxidase transport. Neuroscience 6: 1053–1068

    Google Scholar 

  • Hubel DH, Wiesel TN (1967) Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol 30: 1561–1573

    Google Scholar 

  • Innocenti GM (1980) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol 118: 124–188

    Google Scholar 

  • Innocenti GM (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science 212: 824–827

    Google Scholar 

  • Innocenti GM, Frost DO (1979) Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280: 231–234

    Google Scholar 

  • Innocenti GM, Frost DO (1980) The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Exp Brain Res 39: 365–375

    Google Scholar 

  • Innocenti GM, Frost DO, Illes J (1985) Maturation of visual callosal connections in visually deprived kittens: a challenging critical period. J Neurosci 5: 255–267

    Google Scholar 

  • Jacobson S, Trojanowski JQ (1974) The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res 74: 149–155

    Google Scholar 

  • Katz LC (1987) Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 7: 1223–1249

    Google Scholar 

  • Katz LC, Burkhalter A, Dreyer WJ (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310: 498–500

    Google Scholar 

  • Keller G, Innocenti GM (1981) Callosal connections of suprasylvian visual areas in the cat. Neuroscience 6: 703–712

    Google Scholar 

  • Kisvárday ZF, Martin KAC, Freund TF, Magloczky ZS, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64: 541–552

    Google Scholar 

  • Leporé F, Guillemot J-P (1982) Visual receptive field properties of cells innervated through the corpus callosum in the cat. Exp Brain Res 46: 413–424

    Google Scholar 

  • Leporé F, Ptito M, Guillemot J-P (1986) The role of the corpus callosum in midline fusion. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres — one brain: functions of the corpus callosum. Alan R Liss, New York, pp 211–229

    Google Scholar 

  • Lund RD, Mitchell DE (1979a) The effects of dark-rearing on visual callosal connections of cats. Brain Res 167: 172–175

    Google Scholar 

  • Lund RD, Mitchell DE (1979b) Asymmetry in the visual callosal connections of strabismic cats. Brain Res 167: 176–179

    Google Scholar 

  • Lund RD, Mitchell DE, Henry GH (1978) Squint-induced modification of callosal connections in cats. Brain Res 144: 169–172

    Google Scholar 

  • Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes lucifer yellow useful for electron microscopy. Science 217: 953–955

    Google Scholar 

  • Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res 50: 193–200

    Google Scholar 

  • McGuire BA, Hornung J-P, Gilbert CD, Wiesel TN (1984) Patterns of synaptic input to layer 4 of cat striate cortex. J Neurosci 4: 3021–3033

    Google Scholar 

  • Meyer G, Albus K (1981) Spiny stellates as cells of origin of association fibres from area 17 to area 18 in the cat's neocortex. Brain Res 210: 335–341

    Google Scholar 

  • Otsuka R, Hassler R (1962) Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch Psychiat Neurol 203: 212–234

    Google Scholar 

  • Payne BR (1986) Role of callosal cells in the functional organization of cat striate cortex. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres — one brain: functions of the corpus callosum. Alan R Liss, New York, pp 231–254

    Google Scholar 

  • Payne BR, Elberger AJ, Berman N, Murphy EH (1980) Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum. Science 207: 1097–1099

    Google Scholar 

  • Payne BR, Pearson HE, Berman N (1984) Role of corpus callosum in functional organization of cat striate cortex. J Neurophysiol 52: 570–594

    Google Scholar 

  • Saint Marie RL, Peters A (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopic study. J Comp Neurol 233: 213–235

    Google Scholar 

  • Schofield BR, Hallman LE, Lin C-S (1987) Morphology of corticotectal cells in the primary visual cortex of hooded rats. J Comp Neurol 261: 85–97

    Google Scholar 

  • Schwerdtfeger WK, Buhl E (1986) Various types of non-pyramidal hippocampal neurons project to the septum and contralateral hippocampus. Brain Res 386: 146–154

    Google Scholar 

  • Segraves MA, Rosenquist AC (1982a) The distribution of the cells of origin of callosal projections in cat visual cortex. J Neurosci 2: 1079–1089

    Google Scholar 

  • Segraves MA, Rosenquist AC (1982b) The afferent and efferent callosal connections of retinotopically defined areas in cat cortex. J Neurosci 2: 1090–1107

    Google Scholar 

  • Shatz C (1977) Anatomy of interhemispheric connections in the visual system of Boston siamese and ordinary cats. J Comp Neurol 173: 497–518

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia: combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4: 1805–1852

    Google Scholar 

  • Somogyi P, Kisvárday ZF, Martin KAC, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterised large basket cells in the striate cortex of cat. Neuroscience 10: 261–294

    Google Scholar 

  • Somogyi P, Smith AD (1979) Projection of neostriatal spiny neurons to the substantia nigra: application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light- and electronmicroscopic levels. Brain Res 178: 3–15

    Google Scholar 

  • Tauchi M, Masland RH (1984) The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc R Soc Lond (Biol) 223: 101–119

    Google Scholar 

  • Thanos S, Bonhoeffer F (1987) Axonal arborization in the developing chick retinotectal system. J Comp Neurol 261: 155–164

    Google Scholar 

  • Toyama K, Matsunami K, Ohno T, Tokashiki S (1974) An intracellular study of neuronal organization in the visual cortex. Exp Brain Res 21: 45–66

    Google Scholar 

  • Tremblay F, Ptito M, Leporé F, Miceli D, Guillemot J-P (1987) Distribution of visual callosal projection neurons in the siamese cat: an HRP study. J Hirnforsch 28: 491–503

    Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177: 213–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, E.H., Singer, W. The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Exp Brain Res 75, 470–476 (1989). https://doi.org/10.1007/BF00249898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249898

Key words

Navigation