Skip to main content
Log in

Darkness induction, retinex and cooperative mechanisms in vision

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

We have investigated the darkness induction of surround fields of various composition on a centrally located test field. Darkness induction can be described as a linear subtraction of the luminance of the induction region from the test field luminance, weighted for the size, the length of immediate contact and the distance of the induction field from the test field. Furthermore, closer induction fields exert a shunting effect on the induction effect of fields which are more distally located on the same radius, and neighbouring fields mutually interact. A model is discussed which takes into account these variables. It is compared with older models as well as with the Retinex-model as formulated by Land (1983). Our data and model are closer to the model of Jameson and Hurvich (1964). Neurophysiological correlates and mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpern M, David H (1959) The additivity of contrast in the human eye. J Gen Physiol 43: 109–126

    Google Scholar 

  • Baumgartner G (1961) Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Jung K, Kornhuber HH (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Göttingen Heidelberg, pp 296–311

    Google Scholar 

  • Baumgartner G, Hakas P (1962) Die Neurophysiologie des simultanen Grenzkontrastes: reziproke Reaktionen antagonistischer Neuronengruppen des visuellen Systems. Pflügers Arch 274: 489–500

    Google Scholar 

  • Békésy G v (1967) Mach band type lateral inhibition in different sense organs. J Gen Physiol 50: 519–532

    Google Scholar 

  • Brücke E (1865) Über Ergänzungsund Contrastfarben. Wiener Sitzungsber 51/2: 461–501

    Google Scholar 

  • Creutzfeldt OD, Sakmann B, Scheich H, Korn A (1970) Sensitivity distribution and spatial summation within receptive field centre of retinal on-centre ganglion cells and transfer function of the retina. J Neurophysiology 33: 654–671

    Google Scholar 

  • Creutzfeldt OD (1972) Transfer function of the retina. EEG Clin Neurophysiol Suppl 31: 159–169

    Google Scholar 

  • Creutzfeldt OD, Lee BB, Elepfandt A (1979) A quantitative study of chromatic organization and receptive fields of cells in the lateral geniculate body of the rhesus monkey. Exp Brain Res 35: 527–545

    Google Scholar 

  • Creutzfeldt OD, Lee BB, Valberg A (1986) Colour and brightness signals of parvocellular lateral geniculate neurons. Exp Brain Res 63: 21–34

    Google Scholar 

  • Diamond AL (1955) Foveal simultaneous contrast as a function of inducing area. J Exp Psychol 50: 144–152

    Google Scholar 

  • Ebbinghaus H (1887) Die Gesetzmäßigkeit des Helligkeitskontrastes. Sitzungsberichte der königl. preußbischen Akademie der Wissenschaften Berlin 28/29: 994–1009

    Google Scholar 

  • Fechner GT (1860a) Elemente der Psychophysik. New printing: EJ Bonset, Amsterdam, (1964)

    Google Scholar 

  • Fechner GT (1860b) Über einige Verhältnisse des binokularen Sehens. S Hirzel, Leipzig

    Google Scholar 

  • Freeman RB (1967) Contrast interpretation of brightness constancy. Psych Bull 67: 165–187

    Google Scholar 

  • Gilchrist AL (1977) Perceived lightness depends on perceived spatial arrangement. Science 195: 185–187

    Google Scholar 

  • Gilchrist AL (1979) The perception of surface blacks and whites. Sci Am 240: 112–124

    Google Scholar 

  • Gilchrist AL (1983) The classification and integration of edges is critical to the perception of reflectance and illumination. Percept Psychophys 33: 425–436

    Google Scholar 

  • Goethe JW von (1810) Die Farbenlehre. Cotta, Tübingen

    Google Scholar 

  • Heinemann EG (1972) Simultaneous brightness induction. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, Vol 4. Springer, Berlin Heidelberg New York, pp 146–170

    Google Scholar 

  • Helmholtz H von (1866) Handbuch der physiologischen Optik. 2nd edn. (1896) L Voss, Hamburg Leipzig

    Google Scholar 

  • Hering E (1874) Zur Lehre vom Lichtsinn. II. Über simultanen Lichtcontrast. Wiener Akad Ber 68: 186–201, 229–244

    Google Scholar 

  • Hering E (1879) Der Raumsinn und die Bewegungen des Auges. In: Hermann L (ed) Handbuch der Physiologie, Vol 3. Gesichtssinn. Vogel, Leipzig, pp 343–601

    Google Scholar 

  • Hess C, Prätori H (1894) Messende Untersuchungen über die Gesetzmäßigkeit des simultanen Helligkeitskontrastes. Graefes Arch Ophthal 40: 1–24

    Google Scholar 

  • Hurvich LM (1981) Colour vision. Sinauer Associates Inc., Sunderland Massachusetts

    Google Scholar 

  • Ingle DJ (1985) The goldfish as a retinex animal. Science 227: 651–654

    Google Scholar 

  • Jameson D, Hurvich LM (1959) Perceived color and its dependance on focal, surrounding and prestimulus variables. J Opt Soc Am 50: 37–68

    Google Scholar 

  • Jameson D, Hurvich LM (1961) Complexities of perceived brightness. Science 133: 174–179

    Google Scholar 

  • Jameson D, Hurvich LM (1964) Theory of brightness and color contrast in human vision. Vision Res 4: 135–154

    Google Scholar 

  • Jung R (1961) Korrelationen von Neuronentätigkeit und Sehen. In: Jung R, Kornhuber HH (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Göttingen Heidelberg, pp 410–435

    Google Scholar 

  • Jung R (1973) Visual perception and neurophysiology. In: Jung R (ed) Handbook of sensory physiology. Vol VII/3. Springer, Berlin Heidelberg New York, pp 1–152

    Google Scholar 

  • Kries J v (1882) Die Gesichtsempfindungen und ihre Analyse. Du Bois' Archiv f Physiol Suppl. Verlag von Veit und Comp, Leipzig

    Google Scholar 

  • Kries J v (1905) Die Gesichtsempfindungen. In: Nagel W (ed) Handbuch der Physiologie des Menschen, Vol 3, pp 109–282

  • Land EH (1964) The retinex. Sci Am 52: 247–264

    Google Scholar 

  • Land EH (1974) The retinex theory of color vision. Proc R Inst Gr Brit 47: 23–54

    Google Scholar 

  • Land EH (1977) The retinex theory of color vision. Sci Am 237: 108–128

    Google Scholar 

  • Land EH (1983) Color vision and natural image. III. Recent advances in retinex theory and some implications for cortical computation. Proc Natl Acad Sci USA 80: 5163–5169

    Google Scholar 

  • Land EH (1986) An alternative technique for the computation of the designator in the retinex theory of color vision (Mach bands). Proc Natl Acad Sci USA 83: 3078–3080

    Google Scholar 

  • Land EH, Hubel DH, Livingstone MS, Perry SH, Burns MM (1983) Colour generating interactions across the corpus callosum. Nature 303: 616–618

    Google Scholar 

  • Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 172: 1–11

    Google Scholar 

  • Lange-Malecki B, Creutzfeldt OD, Wortmann K (1986) Läßt sich der Land'sche Retinex Algorithmus auf den Schwarz-WeißKontrast anwenden? Neurobiologentagung. Georg-AugustUniversität Göttingen, R 178

  • Lee BB, Virsu V (1983) The interaction of opponent cone mechanisms in cells of the macaque lateral geniculate nucleus. In: Mollon JD, Sharpe JT (eds) Color vision: physiology and psychophysics. Academic Press, New York, pp 225–233

    Google Scholar 

  • Lehmann W (1886) Über die Anwendung der Methode der mittleren Abstufungen auf den Lichtsinn. In: Wundt W (ed) Philosoph Studien 3: 497–533

  • Li Chao-yi, Creutzfeldt OD (1984) The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat. Pflügers Arch 401: 304–314

    Google Scholar 

  • Mach E (1868) Über die Abhängigkeit der Netzhautstellen voneinander. Vierteljahresschrift f Psychiatrie 2: 37–51

    Google Scholar 

  • Mach E (1900) Die Analyse der Empfindungen, 2nd edn. Gustav Fischer, Jena

    Google Scholar 

  • Mach E (1865–1868) Über die Wirkung der räumlichen Verteilung des Lichtreizes auf die Netzhaut. Sitzungsberichte der Wiener Akademie 52: 303–322 (1865), 54/2: 131–141 (1866), and 57/2: 11–19 (1868). English translation in: Ratliff (1965)

    Google Scholar 

  • Pöppel E (1986) Long-range colour-generating interactions across the retina. Nature 320: 523–525

    Google Scholar 

  • Ratliff F (1965) Mach bands: quantitative studies on neural networks in the retina. Holden-Day Inc, San Francisco London Amsterdam

    Google Scholar 

  • Tschermak A (1903) Über Kontrast und Irradiation. Ergebn Physiol 2: 726–798

    Google Scholar 

  • Valberg A, Seim T, Lee BB, Tryti J (1986) Reconstruction of equidistant color space from responses of visual neurons of macaques. J Opt Soc Am 3: 1726–1734

    Google Scholar 

  • Valberg A, Lee BB, Tigwell DA, Creutzfeldt OD (1985) A simultaneous contrast effect of steady remote surrounds on responses of cells in macaque lateral geniculate nucleus. Exp Brain Res 58: 604–608

    Google Scholar 

  • Wässle H, Heinrich H (1970) Untersuchungen zum Helligkeitskontrast. Vision Res 10: 361–373

    Google Scholar 

  • Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29: 1115–1156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creutzfeldt, O., Lange-Malecki, B. & Wortmann, K. Darkness induction, retinex and cooperative mechanisms in vision. Exp Brain Res 67, 270–283 (1987). https://doi.org/10.1007/BF00248548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248548

Key words

Navigation