Skip to main content
Log in

Cholecystokinin and tyrosine hydroxylase messenger RNAs in neurons of rat mesencephalon: peptide/monoamine coexistence studies using in situ hybridization combined with immunocytochemistry

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The cellular localization of neurons expressing cholecystokinin (CCK) and tyrosine hydroxylase (TH) mRNAs was analysed in rat ventral mesencephalon using in situ hybridization techniques with both complementary DNA and synthetic oligonucleotide probes. Cell bodies distributed throughout the substantia nigra, ventral tegmental area, interfascicular nucleus, midline raphe nuclei, and central and ventral periaqueductal grey matter were found to contain CCK mRNA or TH mRNA as indicated by high densities of grains overlying the perikarya. The in situ hybridization technique was combined with immunocytochemistry on the same tissue section to localize the peptide or enzyme within its respective mRNA-containing somata. In addition, the presence of TH immunoreactivity was demonstrated within cell bodies labeled for CCK mRNA and immunostaining for CCK was detected within TH mRNA-containing neurons. In the medial geniculate nucleus a strong labeling for CCKmRNA was observed, in spite of the fact that so far no CCK-like immunoreactivity has been demonstrated in perikarya in this nucleus. The specificity of the probes was verified by RNA blot hybridization. These results confirm recent double-labeling immunocytochemical studies and further characterize the coexistence of CCK and TH at the level of their mRNAs as well as their post-translational products in a large population of mesencephalic dopamine neurons known to project to forebrain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berod A, Faucon Biguet N, Dumas S, Bloch B, Mallet J (1987) Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization. Proc Natl Acad Sci USA 84: 1699–1703

    Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol 2. Classical transmitters in the CNS, Part I. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Blumstein LK, Crawley JN, Davis LG, Baldino F Jr (1987) Neuropeptide modulation of apomorphine-induced stereotyped behavior. Brain Res 404: 293–300

    Google Scholar 

  • Bruyn GW (1968) Huntington's chorea: historical, clinical and laboratory synopsis. In: Vinkin PJ, Bruyn GW (eds) Handbook of clinical neurology, Vol 6. Diseases of the basal ganglia. North Holland, Amsterdam, pp 298–378

    Google Scholar 

  • Bönnemann C, Giraud P, Eiden LE, Meyer DK (1987) Measurement of mRNA specific for preprocholecystokinin in rat caudatoputamen and areas projecting to it. Neurochem Int 10: 521–524

    Google Scholar 

  • Chesselet M-F, Weiss L, Wuenschell C, Tobin AJ, Affolter HU (1987) Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain. J Comp Neurol 262: 125–140

    Google Scholar 

  • Cho HJ, Shiotani Y, Shiosaka S, Inagaki S, Kubota Y, Kiyama H, Umegaki K, Tateishi K, Hashimura E, Hamaoka T, Tohyama M (1983) Ontogeny of cholecystokinin-8-containing neuron system of the rat: an immunohistochemical analysis. I. Forebrain and upper brainstem. J Comp Neurol 218: 25–41

    Google Scholar 

  • Coons AH (1958) Fluorescent antibody methods. In: Danielli IF (ed) General cytochemical methods. Academic Press, New York, pp 399–422

    Google Scholar 

  • Crawley JN, Hommer DW, Skirboll LR (1984) Behavioral and neurophysiological evidence for a facilitatory interaction between co-existing transmitters: cholecystokinin and dopamine. Neurochem Int 6: 755–760

    Google Scholar 

  • Crawley JN, Stivers JA, Blumstein LK, Paul SM (1985) Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specific to a site of coexistence. J Neurosci 5: 1972–1983

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 62: 1–55

    Google Scholar 

  • Deschênes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE (1984) Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci USA 81: 726–730

    Google Scholar 

  • Deschênes RJ, Haun RS, Funckes CL, Dixon JE (1985) A gene encoding rat cholecystokinin: isolation, nucleotide sequence, and promotor activity. J Biol Chem 260: 1280–1286

    Google Scholar 

  • Duchemin AM, Quach TT, Iadarola MJ, Deschênes RJ, Schwartz JP, Wyatt RJ (1987) Expression of the cholecystokinin gene in rat brain during development. Dev Neurosci 9: 61–67

    Google Scholar 

  • Fink JS, Smith GP (1980) Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Brain Res 199: 359–384

    Google Scholar 

  • Friedman J, Schneider BS, Powell D (1985) Differential expression of the mouse cholecystokinin gene during brain and gut development. Proc Natl Acad Sci USA 82: 5593–5597

    Google Scholar 

  • Gendelman HE, Moench TR, Narayan O, Griffin DE, Clements JE (1985) A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues. J Virol Methods 11: 93–103

    Google Scholar 

  • Gilles C, Lotstra F, Vanderhaeghen J-J (1983) CCK nerve terminals in rat striatum and limbic areas originate partly in the brain stem and partly in telencephalic areas. Life Sci 32: 1683–1690

    Google Scholar 

  • Grima B, Lamouroux A, Blanet F, Faucon Biguet N, Mallet J (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci USA 82: 617–621

    Google Scholar 

  • Gubler U, Chua AO, Hoffman BJ, Collier KI, Eng I (1984) Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 81: 4307–4310

    Google Scholar 

  • Hamilton M, Sheehan MJ, De Belleroche J, Herberg LJ (1986) The cholecystokinin analogue, caerulein, does not modulate dopamine release or dopamine-induced locomotor activity in the nucleus accumbens of rat. Neurosci Lett 44: 77–82

    Google Scholar 

  • Han VKM, Snouweart J, Towle AC, Lund PK, Lauder JM (1987) Cellular localization of tyrosine hydroxylase mRNA and its regulation in the rat adrenal medulla and brain by in situ hybridization with an oligodeoxyribonucleotide probe. J Neurosci Res 17: 11–18

    Google Scholar 

  • Harlan RE, Shivers BD, Romano GJ, Howells RD, Pfaff DW (1987) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J Comp Neurol 258: 159–184

    Google Scholar 

  • Hasegawa M, Usui H, Araki K, Kuwano R, Takahashi Y (1986) Developmental and regional changes of cholecystokinin mRNA in rat brain. FEBS Lett 194: 224–226

    Google Scholar 

  • Hökfelt T, Skirboll L, Rehfeld JF, Goldstein M, Markey K, Dann O (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokininlike peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5: 2093–2124

    Google Scholar 

  • Hökfelt T, Mårtensson R, Björklund A, Kleinau S, Goldstein M (1984a) Distributional maps of tyrosine hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol 2. Classical transmitters in the CNS, Part I. Elsevier, Amsterdam, pp 277–379

    Google Scholar 

  • Hökfelt T, Johansson O, Goldstein M (1984b) Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol 2. Classical transmitters in the CNS, Part I. Elsevier, Amsterdam, pp 157–276

    Google Scholar 

  • Hökfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Björklund H, Olson L, Lindh B, Elfrin L-G, Lundberg JM, Lindgren JÅ, Samuelsson B, Pernow B, Terenius L, Post C, Everitt B, Goldstein M (1986) Coexistence of neuronal messengers — an overview. Prog Brain Res 68: 33–70

    Google Scholar 

  • Hökfelt T, Herrera-Marschitz M, Seroogy K, Ju G, Holets V, Schalling M, Ungerstedt U, Post C, Rehfeld JF, Frey P, Fischer J, Dockray G, Hamaoka T, Walsh JH, Goldstein M (1988) Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequencespecific antisera and with special reference to the caudate nucleus and primary sensory neurons. J Chem Neuroanat 1: 11–52

    Google Scholar 

  • Hornykiewicz O (1980) Biochemical abnormalities in some extrastriatal neuronal systems in Parkinson's disease. In: Rinne UK, Klinger M, Stan G (eds) Parkinson's disease, current progress, problems and management. Elsevier, Amsterdam, pp 109–119

    Google Scholar 

  • Hunt CA, Seroogy KB, Gall CM, Jones EG (1987) Cholecystokinin innervation of rat thalamus, including fibers to ventroposterolateral nucleus from dorsal column nuclei. Mol Brain Res 426: 257–269

    Google Scholar 

  • Innis RB, Correa FM, Uhl GR, Schneider B, Snyder SH (1979) Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. Proc Natl Acad Sci USA 76: 521–525

    Google Scholar 

  • Javoy-Agid F, Ruberg M, Tequet H, Bokobza B, Agid Y, Gaspar P, Breger B, N'Guyen-Legros J, Alvarez C, Gray F, Escourolle R, Scatton B, Rouquier L (1984) Biochemical neuropathology of Parkinson's disease. Adv Neurol 40: 189–198

    Google Scholar 

  • Johnson DG, de C Nogueira Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43: 349–350

    Article  CAS  PubMed  Google Scholar 

  • Ju G, Hökfelt T, Fischer JA, Frey P, Rehfeld JF, Dockray GJ (1986) Does cholecystokinin-like immunoreactivity in rat primary sensory neurons represent calcitonin gene-related peptide? Neurosci Lett 68: 305–310

    Google Scholar 

  • Ju G, Hökfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide (CGRP) immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptideand cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 247: 417–431

    Google Scholar 

  • Kuwano R, Araki K, Usui H, Fukui T, Ohtsuka E, Ikehara M, Takahashi Y (1984) Molecular cloning and nucleotide sequence of cDNA coding for rat brain cholecystokinin precursor. J Biochem 96: 923–926

    Google Scholar 

  • Lamouroux A, Faucon Biguet N, Samolyk D, Privat A, Salomon JC, Pujol JF, Mallet J (1982) Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc Natl Acad Sci USA 79: 3881–3885

    Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine- and norepinephrine-containing neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 229–255

    Google Scholar 

  • Lorén I, Alumets J, Håkanson R, Sundler F (1979) Distribution of gastrin and CCK-like peptides in rat brain: an immunocytochemical study. Histochemistry 59: 249–257

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Markey KA, Kondo S, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17: 79–85

    Google Scholar 

  • Markstein R, Hökfelt T (1984) Effect of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus. J Neurosci 4: 570–575

    Google Scholar 

  • Marley PD, Emson PC, Rehfeld JH (1982) Effect of 6-hydroxydopamine lesions of the medial forebrain bundle on the distribution of cholecystokinin in rat forebrain. Brain Res 252: 382–385

    Google Scholar 

  • Mason ST (1984) Catecholamines and behavior. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthysse SW, Kety SS (1975) Catecholamines and schizophrenia. Pergamon Press, Oxford

    Google Scholar 

  • Meltzer HY, Stahl SM (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2: 19–76

    CAS  Google Scholar 

  • Mutt V, Jorpes JE (1966) Isolation of aspartyl-phenylalanine amide from cholecystokinin-pancreozymin. Biochem Biophys Res Commun 26: 392–397

    Google Scholar 

  • Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. I. Cleavage with thrombin and with trypsin. Eur J Biochem 6: 156–162

    Google Scholar 

  • Nair NPV, Lal S, Bloom DM (1986) Cholecystokinin and schizophrenia. Prog Brain Res 65: 237–258

    Google Scholar 

  • Pease PC (1962) Buffered formaldehyde as a killing agent and primary fixative for electron microscopy. Anat Rec 142: 342

    Google Scholar 

  • Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31: 840–842

    Google Scholar 

  • Randrup A, Munkvad I (1972) Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomol Psychiatr 1: 2–7

    Google Scholar 

  • Rehfeld JF (1987) Preprocholecystokinin processing in the normal human anterior pituitary. Proc Natl Acad Sci USA 84: 3019–3023

    Google Scholar 

  • Réthelyi M, McGehee D, Lund PK (1986) Neuronal localization of cholecystokinin mRNAs in rat and guinea pig. Soc Neurosci Abstr 12: 1041

    Google Scholar 

  • Roberts GW, Ferrier IN, Lee Y, Crow TJ, Johnstone EC, Owens DGC, Bacarese-Hamilton AJ, McGregor G, O'Shaughnessy D, Polak JM, Bloom SR (1983) Peptides, the limbic lobe and schizophrenia. Brain Res 288: 199–211

    Google Scholar 

  • Schalling M, Hökfelt T, Wallace B, Goldstein M, Filer D, Yamin C, Schlessinger DH (1986) Tyrosine 3-hydroxylase in rat brain and adrenal medulla: hybridization histochemistry and immunohistochemistry combined with retrograde tracing. Proc Natl Acad Sci USA 83: 6208–6212

    Google Scholar 

  • Schalling M, Dagerlind Å, Brené S, Petterson R, Carrol JM, Joh TH, Hökfelt T (1987) Localization of mRNA for phenylethanolamine-N-methyltransferase (PNMT) using in situ hybridization. Acta Physiol Scand 131: 631–632

    Google Scholar 

  • Schalling M, Seroogy K, Hökfelt T, Chai SY, Hallman H, Persson H, Larhammar D, Ericsson A, Terenius L, Graffi J, Massoulié J, Goldstein M (1988) Neuropeptide Y in the rat adrenal gland — immunohistochemical and in situ hybridization studies. Neuroscience 24: 337–349

    Google Scholar 

  • Schneider LH, Albert JE, Iversen SD (1983) CCK-8 modulation of mesolimbic dopamine: antagonism of amphetamine-stimulated behaviors. Peptides 4: 749–753

    Google Scholar 

  • Segerson TP, Hoefler H, Childers H, Wolfe HJ, Wu P, Jackson IMD, Lechan RM (1987) Localization of thyrotropin-releasing hormone prohormone messenger ribonucleic acid in rat brain by in situ hybridization. Endocrinology 121: 98–107

    Google Scholar 

  • Seroogy KB (1986) Cholecystokinin innervation of rat forebrain. Ph. D. Dissertation, University of California, Irvine

    Google Scholar 

  • Seroogy KB, Fallon JH (1988) Forebrain projections from cholecystokinin-like immunoreactive neurons in rat midbrain. J Comp Neurol (in press)

  • Seroogy KB, Mehta A, Fallon JH (1987a) Neurotensin and cholecystokinin coexistence within neurons of the ventral mesencephalon: projections to forebrain. Exp Brain Res 68: 277–289

    Google Scholar 

  • Seroogy K, Schalling M, Chai SY, Hökfelt T, Persson H, Dixon J, Filer D, Goldstein M (1987b) Dopamine/CCK coexistence in rat ventral mesencephalon as determined by in situ hybridization histochemistry combined with immunocytochemistry. Neuroscience [Suppl] 22: S305

    Google Scholar 

  • Seroogy K, Schalling M, Brené S, Dagerlind Å, Chai SY, Persson H, Dixon J, Filer D, Goldstein M, Walsh J, Hökfelt T (1987c) Combined in situ hybridization and immunohistochemistry for CCK and tyrosine hydroxylase in rat ventral midbrain. Soc Neurosci Abstr 13: 1088

    Google Scholar 

  • Seroogy KB, Dangaran K, Lim S, Haycock J, Fallon JH (1988) Ventral mesencephalic neurons containing both cholecystokininand tyrosine hydroxylase-like immunoreactivities project to forebrain regions. J Comp Neurol (in press)

  • Shivers BD, Harlan RE, Pfaff DW, Schachter BS (1986) Combination of immunocytochemistry and in situ hybridization in the same tissue section of rat pituitary. J Histochem Cytochem 34: 39–43

    Google Scholar 

  • Siegel RE, Young WS III (1985) Detection of preprocholecystokinin and preproenkephalin A mRNAs in rat brain by hybridization histochemistry using complementary RNA probes. Neuropeptides 6: 573–580

    Google Scholar 

  • Siegel RE, Young WS III (1986) Detection of neuropeptide mRNAs by in situ hybridization histochemistry. In: Uhl GR (ed) In situ hybridization in brain. Plenum Press, New York, pp 63–71

    Google Scholar 

  • Skirboll LR, Grace AA, Hommer DW, Rehfeld J, Goldstein M, Hökfelt T, Bunney BS (1981) Peptide-monoamine coexistence: actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons. Neuroscience 11: 2111–2124

    Google Scholar 

  • Snyder SH, Banerju SP, Yamamura HI, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia. Science 184: 1243–1253

    CAS  Google Scholar 

  • Spokes EGS (1980) Neurochemical alterations in Huntington's chorea: a study of post-mortem brain tissue. Brain 103: 179–210

    Google Scholar 

  • Studler JM, Simon H, Cesselin F, Legrand JC, Glowinski J, Tassin JP (1981) Biochemical investigation on the cholecystokinin octapeptide in dopaminergic neurons originating from the ventral tegmental area of the rat. Neuropeptides 2: 131–139

    Google Scholar 

  • Studler JM, Javoy-Agid F, Cesselin F, Legrand JC, Agid Y (1982) CCK-8-immunoreactivity distribution in human brain: selective decrease in the substantia nigra from parkinsonian patients. Brain Res 243: 176–179

    Google Scholar 

  • Studler JM, Reibaud M, Tramu G, Blanc G, Glowinski J, Tassin JP (1984) Pharmacological study on the mixed CCK8/DA meso-nucleus accumbens pathway: evidence for the existence of storage sites containing the two transmitters. Brain Res 298: 91–97

    Google Scholar 

  • Studler JM, Javoy-Agid F (1985) Cholecystokinin octapeptide immunoreactivity in human brain: modifications in parkinsonian patients. Ann NY Acad Sci 448: 656–659

    Google Scholar 

  • Takahashi Y, Kato K, Hayashizaki Y, Wakabayashi T, Ohtsuka E, Atsuki S, Ikehara M, Matsubara K (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 82: 1931–1935

    Google Scholar 

  • Vanderhaeghen J-J, Lotstra F, De Mey J, Gilles C (1980) Immunochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77: 1190–1194

    Google Scholar 

  • Verbanck PMP, Lotstra F, Gilles C, Linkowski P, Mendelwicz J, Vanderhaeghen J-J (1984) Reduced cholecystokinin immunoreactivity in the cerebrospinal fluid of patients with psychiatric disorders. Life Sci 34: 67–72

    Google Scholar 

  • Wang RY, Hu X-T (1986) Does cholecystokinin potentiate dopamine action in the nucleus accumbens? Brain Res 380: 363–367

    Google Scholar 

  • Wang RY, White FJ, Voigt MM (1984) Cholecystokinin, dopamine, and schizophrenia. Trends Pharmacol 5: 436–438

    Google Scholar 

  • Wang RY, White FJ, Voigt MM (1985) Interactions of cholecystokinin and dopamine in the nucleus accumbens. Ann NY Acad Sci 448: 352–360

    Google Scholar 

  • White FJ, Wang RY (1984) Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons. Brain Res 300: 161–166

    Google Scholar 

  • Whittemore SR, Ebendal T, Lärkfors L, Olson L, Seiger Å, Stromberg I, Persson H (1986) Developmental and regional expression of β-nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. USA 83: 817–821

    Google Scholar 

  • Widerlöv E, Kalivas PW, Lewis MH, Prange AJ Jr, Breese GR (1983) Influence of cholecystokinin on central monoaminergic pathways. Regul Pept 6: 99–109

    Google Scholar 

  • Williams RG, Gayton RJ, Zhu W-Y, Dockray GJ (1981) Changes in brain cholecystokinin octapeptide following lesions of the medial forebrain bundle. Brain Res 213: 227–230

    Google Scholar 

  • Wolfson B, Manning RW, Davis LG, Arentzen R, Baldino F Jr (1985) Colocalization of corticotropin releasing factor and vasopressin mRNA in neurons after adrenalectomy. Nature 315: 59–61

    Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986a) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci USA 83: 9827–9831

    Google Scholar 

  • Young WS III, Mezey E, Siegel RE (1986b) Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Mol Brain Res 1: 231–241

    Google Scholar 

  • Young WS III, Mezey E, Siegel RE (1986c) Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett 70: 198–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seroogy, K., Schalling, M., Brené, S. et al. Cholecystokinin and tyrosine hydroxylase messenger RNAs in neurons of rat mesencephalon: peptide/monoamine coexistence studies using in situ hybridization combined with immunocytochemistry. Exp Brain Res 74, 149–162 (1989). https://doi.org/10.1007/BF00248288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248288

Key words

Navigation