Skip to main content
Log in

Measurement of the transmembrane electrical potential of Dunaliella acidophila by microelectrodes

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A method was developed to determine electrical potential differences across the plasma membrane of the microalga Dunaliella by means of potential-sensitive microelectrodes. Special emphasis was put on the measurement of the membrane potential in the acidophilic Dunaliella acidophila (optimal growth at pH 1.0), but neutrophilic, halotolerant Dunaliella species were used as reference systems. For Dunaliella acidophila positive membrane potentials (cytoplasma relative to the medium), ranging from +30 to +65mV were measured. Illumination caused a decrease of the positive potential by about 10 mV. The ATPase inhibitor omeprazole caused an increase of the positive membrane potential ranging from +60 to +100 mV, whereas the ionophore gramicidin caused a decrease of the MP to +10 to +30 mV. The salt tolerant, neutrophilic Dunaliella parva and Dunaliella bardawil exhibited negative membrane potentials in the order of -40 to -60mV, and light caused a hyperpolarization of about 10 mV. A negative membrane potential was measured also in D. acidophila cells transferred to pH 7.0. The physiological significance of a positive membrane potential for acidophilic algae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E m :

membrane potential

PM:

plasma membrane

TPB :

tetraphenylborone anion

TPP+ :

tetraphenyl-phosphonium cation

SCN :

isothiocyanate

References

  • Bakker E (1990) The role alkali-cation transport in energy coupling of neutrophilic and acidophilic bacteria: an assessment of methods and concepts. FEMS Microbiol Rev 75: 319–334

    Google Scholar 

  • Blatt MR (1987) Electrical characteristics of stomatal guard cells. The ionic basis of the membrane potential and the consequence of potassium chloride leakage from micro-electrodes. Planta 170: 272–287

    Google Scholar 

  • Blatt MR, Beilby MJ, Tester M (1990) Voltage dependence of the Chara proton pump revealed by current — voltage measurements during rapid metabolism blockade with cyanide. J Membrane Biol 114: 205–227

    Google Scholar 

  • Brüggemann M, Weiger C, Gimmler H (1978) Synchronized culture of the halotolerant unicellular green alga Dunaliella parva. Biochem Physiol Pflanzen 172: 487–505

    Google Scholar 

  • Bulychev AA, Andrianov VK, Kurella GA, Litvin FF (1972) Microelectrode measurements of the transmembrane potential of chloroplasts and its photoinduced changes. Nature 236: 175–177

    Google Scholar 

  • Carandang JS, Pick U, Sekler I, Gimmler H (1992) K+ content and K+ fluxes in Dunaliella acidophila, an alga with positive electrical potentials. I. Low affinity uptake system. J Plant Physiol 139: 413–421

    Google Scholar 

  • Gilmour DJ, Kaaden R, Gimmler H (1985) Vanadate inhibition of ATPase of Dunaliella parva in vitro and in vivo. J Plant Physiol 118: 111–126

    Google Scholar 

  • Gimmler H, Kugel H, Leibfritz D, Mayer A (1988) Cytoplasmic pH of Dunaliella parva and Dunaliella acidophila as monitored by (31P) NMR spectroscopy and the DMO technique. Physiol Plant 74: 521–530

    Google Scholar 

  • Gimmler H, Weis U, Kugel H, Treffney B (1989) Dunaliella acidophila (Kalina) Masyuk-an alga with a positive membrane potential. N Phytol 113: 175–184

    Google Scholar 

  • Gimmler H, Schieder M, Kowalski M, Zimmermann U, Pick U (1991) Dunaliella acidophilia-an alga with a positive zeta potential. Plant Cell Environ 14: 261–269

    Google Scholar 

  • Gimmler H, Weis U (1992) Dunaliella acidophila-life at pH 1.0. In: Avron M, Ben-Amotz A. (eds) Dunaliella-Physiology, biochemistry and biotechnology. CRS Press, Boca Raton, Fla., USA, pp 99–133

    Google Scholar 

  • Gläser HU, Sekler I, Pick U (1990) Indications for a K+, H+ cotransport systems in plasma membranes from to acidophilic microorganism. Biochim Biophys Acta 1019: 293–299

    Google Scholar 

  • Hirsch R, Carandang J, Gimmler H (1992) Cl- fluxes and Cl- content of Dunaliella acidophila-an alga with a positive membrane potential. J Exp Bot, 43: 887–896

    Google Scholar 

  • Köhler K, Geisweid HJ, Simonis W, Urbach W (1963) Changes in the membrane potential and resistance caused by transient increase of potassium conductance in the unicellular green alga Eremosphaera viridis. Planta 159: 165–171

    Google Scholar 

  • Lindberg P, Brandstrom A, Wallmark B, Mattson H, Rikner L, Hoffmann KJ (1990) Omeprazole-the 1st proton pump inhibitor. Med Res Rev 10: 1–54

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502

    Google Scholar 

  • Raven JA (1976) Transport in algal cells. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology (New Series). Springer, Berlin Heidelberg New York, vol. 2A, pp 129–188

    Google Scholar 

  • Remis D, Bulychev AA, Kurella GA (1986) The electrical and chemical components of the proton-motive force in chloroplasts as measured with capillary and pH-sensitive micro-electrodes. Biochim Biophys Acta 852: 68–72

    Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92: 667–683

    Google Scholar 

  • Sekler I, Gläser HU, Pick U (1991) Characterization of a plasma membrane H+ ATPase from the extremely acidophilic alga Dunaliella acidophila. J Membr Biol 121: 51–57

    Google Scholar 

  • Serrano R (1985) Plasma membrane ATPase of plants and fungi. CRS Press, Boca Raton, Fla., USA

    Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947: 1–28

    Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Ann Rev Plant Physiol Plant Mol Biol 40: 61–94

    Google Scholar 

  • Serrano R (1990) Plasma membrane ATPase. In: Larson C, Möller IM (eds) The plant plasma membrane. Structure, function and molecular biology. Springer, Berlin Heidelberg New York, pp 127–153

    Google Scholar 

  • Slayman Cl (1987) The plasma membrane ATPase of Neurospora: a proton pumping electroenzyme. J Bioenerg Biomembr 19: 1–20

    Google Scholar 

  • Spanswick RM (1974) Evidence for an electrogenic ion pump in Nitella translucents. II Control of the light-stimulated component of the membrane potential. Biochim Biophys Acta 332: 387–398

    Google Scholar 

  • Walker NA, Smith FA (1977) The H+ ATPase of the Chara cell membrane: its role in determing membrane P. D. and cytoplasmic pH. In: Thellier M, Monnier A, Demarty M, Dainty J (eds) Echanges ioniques transmembranes chez les végétaux. Publications de l'université de Rouen, pp 255–261

  • Zeldin MH (1977) Light-induced electrophysiological changes in Euglena. In: Thellier M, Monnier A, Demarty M, Dainty J (eds) Echanges ioniques transmembranes chez les végétaux. Publications de l'université de Rouen, 591–597

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remis, D., Simonis, W. & Gimmler, H. Measurement of the transmembrane electrical potential of Dunaliella acidophila by microelectrodes. Arch. Microbiol. 158, 350–355 (1992). https://doi.org/10.1007/BF00245364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245364

Key words

Navigation