Skip to main content
Log in

The influence of Congo red on the cell wall and (1 → 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Congo red was applied to growing yeast cells and regenerating protoplasts in order to study its effects on wall biogenesis and cell morphogenesis. In the presence of the dye, the whole yeast cells grew and divided to form chains of connected cells showing aberrant wall structures on both sides of the septum. The wall-less protoplasts in solid medium with the dye exhibited an abnormal increase in volume, regeneration of aberrant cell walls and inability to carry out cytokinesis or protoplast reversion to cells. In liquid medium, the protoplasts synthesized glucan nets composed mainly of thin fibrils orientated at random, whereas normally, in the absence of dye, the nets consist of rather thick fibrils, 10 to 20 nm in width, assembled into broad ribbons. These fibrils are known to consist of triple 6/1 helical strands of (1 » 3)-β-d-glucan aggregated laterally in crystalline packing. The thin fibrils (c. 4 to 8 nm wide) can contain only a few triple helical strands (c. 1.6 nm wide) and are supposed to be prevented from further aggregation and crystallization by complexing with Congo red on their surfaces. Some loose triple 6/1 helical strands (native elementary fibrils) are also discernible. They represent the first native (1 » 3)-β-d-glucan elementary fibrils depicted by electron microscopy.

The effects of Congo red on growth and the wall structure in normal cells and regenerating protoplasts in solid medium can be explained by the presence of a complex which the dye forms with (helical) chain parts of the glucan network and which results in a loss of rigidity by a blocked lateral interaction between the helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon JSD, Davidson EO, Jones D, Taylor IF (1966) The location of chitin in the yeast cell wall. Biochem J 101: 36C-38C

    Article  CAS  Google Scholar 

  • Bacon JSD (1981) Nature and disposition of polysaccharides within the cell envelope. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics and ultrastructure. CRC Press Boca Raton, pp 65–84

    Google Scholar 

  • Ballou CE, Maitra SK, Walker JW, Whelan WL (1977) Developmental defects associated with glucosamine auxotrophy in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 74: 4351 to 4355

    Article  Google Scholar 

  • Ballou CE (1988) Organization of the Saccharomyces cerevisiae cell wall. In: Varner JE (ed) Self-assembling architcture. 46th Ann Symp Soc Develop Biol, St Paul, MN 1987, USA. Alan R Liss, New York, pp 105–117

    Google Scholar 

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KH (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77: 6678–6682.

    Article  CAS  Google Scholar 

  • Beran J, Řeháček J, Seichertová O (1968) The problem of chitin structure and the participation of the cell wall in the budding of the yeast Saccharomyces cerevisiae. In: Nečas O, Svoboda a (eds) Proc 2nd Int Symp Yeast Protopl Brno. Acta Facultatis Medicae Universitatis Brunensis, pp 175–182

  • Bowers B, Levin G, Cabib E (1974) Effect of polyoxin d on chitin synthesis and septum formation in Saccharomyces cerevisiae J Bacteriol 119: 564–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS (1975) Freeze-etching nomenclature. Science 190: 54–56

    Article  CAS  Google Scholar 

  • Cabib E, Ulane R, Bowers B (1974) A molecular model for morphogenesis: the primary septum of yeast. Curr Top Cell Regul 8: 1–32

    Article  CAS  Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci 5: 370–375

    CAS  PubMed  Google Scholar 

  • Colvin JR, Witter DE (1983) Congo red and calcofluor white inhibition of Acetobacter xylinum cell growth and of bacterial cellulose microfibril formation: isolation and properties of transient, extracellular glucan related to cellulose. Protoplasma 116: 34–40

    Article  CAS  Google Scholar 

  • Eddy AA, Williamson DH (1957) A method of isolating protoplasts from yeast. Nature 179: 1252–1253

    Article  Google Scholar 

  • Elorza MV, Rico H, Sentadreu R (1983) Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129: 1577–1582

    CAS  PubMed  Google Scholar 

  • Frey-Wyssling A (1976) The plant cell wall Encyclopedia of plant anatomy III. 4. Gebrüder Bornträger, Berlin Stuttgart

    Google Scholar 

  • Gabriel M (1968) Cell wall regeneration in Rhizopus nigricans protoplasts. In: Nečas O, Svoboda A (eds) Proc. 2nd Int Symp Yeast Protopl Brno. Acta Facultatis Medicae Universitatis Brunensis, J. E. Purkyně University, Brno pp 147–151

    Google Scholar 

  • Haigler CH, Brown RM, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of the cellulose microfibrils. Science 210: 903–906

    Article  CAS  Google Scholar 

  • Harada T, Koreeda A, Sato S, Kasai N (1979) Electronmicroscopic study of the ultrastructure of curdlan gel: assembly and dissociation of fibrils by heating. J El Microsc 28: 147–153

    Article  CAS  Google Scholar 

  • Herth W (1980) Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87: 442–450

    Article  CAS  Google Scholar 

  • Houwink AL, Kreger DR (1953) Observations on the cell wall of yeasts. An electron microscope and X-ray diffraction study. Antonie van Leeuwenhoek 19: 1–24

    Article  CAS  Google Scholar 

  • Jelsma J, Kreger DR (1975) Ultrastructural observations on (1 → 3)-β-d-glucan from fungal cell walls. Carbohydr Res 43: 200–203

    Article  CAS  Google Scholar 

  • Johnson BF (1967) Growth of the fission yeast, Schizosaccharomyces pombe, with late excentric lytic fission in an unbalanced medium. J Bacteriol 94: 192–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelleti T, Szabolzi G, Lenvai A, Garzo T (1954) Untersuchungen über die lebensfähigen Eiweißkörper von Saccharomyces cerevisiae. Die Regeneration in sterilem Filtrat von zerstörten Hefezellen. Acta Sci Hung 5: 213–217

    Google Scholar 

  • Kopecká M, Phaff HJ, Fleet GH (1974a) Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae and its chemical nature. J Cell Biol 62: 66–76

    Article  Google Scholar 

  • Kopecká M, Phaff HJ, Fleet GH (1974b) The ultrastructure of the yeast cell wall after enzymic degradation by purified enzymes. In: Klaushofer H, Sleytr UB (eds) Proc 4th Int Symp Yeasts Vienna. Hochschülerschaft an der Hochschule für Bodenkultur. Wien D8, pp 205–206

    Google Scholar 

  • Kopecká M (1976) Biogenesis of the fibrillar wall component of yeast protoplasts, Ph.D. thesis (in Czech). J. E. Purkyně University Brno, Faculty of Medicine

  • Kopecká M (1985) Electron microscopic study of purified polysaccharide components glucans and mannan of the cell walls in the yeast Saccharomyces cerevisiae. J Basic Microbiol 25: 161–174

    Article  Google Scholar 

  • Kopecká M, Farkaš V (1979) RNA synthesis and the formation of the cell wall. Effect of lomofungin on regenerating protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 110: 453–463

    Article  Google Scholar 

  • Kopecká M, Kreger DR (1986) Assembly of microfibrils in vivo and in vitro from (1 → 3)-d-glucan synthesized by protoplasts of Saccharomyces cerevisiae. Arch Microbiol 143: 387–395

    Article  Google Scholar 

  • Kreger DR, Kopecká M (1973) On the nature of the fibrillar nets formed by protoplasts of Saccharomyces cerevisiae in liquid media. In: Villaneuva JR, Garcia-Acha I, Gascón S, Uruburu F (eds) Yeast, mold and plant protoplasts Proc 3rd Int Symp Yeast Protopl Salamanca. Academic Press, London, pp 117–130

    Google Scholar 

  • Kreger DR, Kopecká M (1976a) On the nature and formation of the fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid media: an electron microscopic, X-ray diffraction and chemical study J Gen Microbiol 92: 207–221

    Article  CAS  Google Scholar 

  • Kreger DR, Kopecká M (1976b) Assembly of wall polymers during the regeneration of yeast protoplasts. In: Peberdy JF, Rose AH, Roberts HJ, Cocking EC (eds) Microbial and plant protoplasts. Academic Press, London, pp 237–252

    Google Scholar 

  • Kreger DR, Kopecká M (1981) The molecular organization of chitin in normal and regenerated walls of Saccharomyces cerevisiae A reconsideration of ultrastructural data. In: Robinson DG, Quader H (eds) Cell walls 1981, Proc 2nd Cell Wall Meeting Göttingen 1981. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, pp 130–134

    Google Scholar 

  • Marchessault RH, Deslandes Y, Ogawa K, Sundarajan PR (1977) X-ray diffraction data for (1 → 3)-β-d-glucan. Can J Chem 55: 300–303

    Article  CAS  Google Scholar 

  • Moor H, Mühlethaler K (1963) Fine structure in frozen-etched yeast cells. J Cell Biol 17: 609–628

    Article  CAS  Google Scholar 

  • Nečas O (1961) Physical conditions as important factors for the reregeration of naked protoplasts. Nature 192: 580–581

    Article  Google Scholar 

  • Ogawa K, Watanabe T, Tsurugi J, Ono S (1972a) Conformational behaviour of a gel-forming (1 → 3)-β-d-glucan in alkaline solution. Carbohydr Res 23; 399–405

    Article  CAS  Google Scholar 

  • Ogawa K, Tsurugi J, Watanabe T (1972b) Complex of gel-forming β-1,3-d-glucan with Congored in alkaline solution. Chem Letters pp 689–692

    Article  Google Scholar 

  • Ogawa K, Hatano M (1978) Cirular dichronism of the complex of a (1 → 3)-β-d-glucan with congo-red. Carbohydr Res 67: 527 to 535

    Article  Google Scholar 

  • Pancaldi S, Poli F, Dall'olio G, Vannini GL (1985) Anomalous morphogenetic events in yeast exposed to the polysaccahride-binding dye Congo red. Caryologia 38: 247–256

    Article  CAS  Google Scholar 

  • Roberts E, Seagull RW, Haigler CH, Brown RM (1982) Alteration of cellulose microfibril formation in eukaryotic cells: calcofluor white interferes with microfibril assembly. Protoplasma 113: 1–9

    Article  Google Scholar 

  • Saito H, Ohki T, Sasaki T (1977a) A 13C nuclear magnetic resonance study of gel-forming (1 → 3)-β-d-glucans. Evidence of the presence of single-helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faecalis var. myxogenes IFO 13140. Biochemistry 16:908–914

    Article  CAS  Google Scholar 

  • Saito H, Ohki T, Takasuka N, Sasaki T (1977b) A 13C-N.M.R.-spectra strudy of a gel-forming branched (1 → 3)-β-d-glucan (Lentinan) from Lentinus edodes, and its acid-degraded fractions. Structure and dependence of conformation on the molecular weight. Carbohydr Res 58: 293–305

    Article  CAS  Google Scholar 

  • Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Duran A, Cabib E (1991) The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114: 111–123

    Article  CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1979) Evidence for covalent linkages between chitin and β-glucan in a fungal wall. J Gen Microbiol 114: 99–108

    Article  CAS  Google Scholar 

  • Silverman SJ, Sburlatti A, Slater ML, Cabib E (1988) Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85: 4735–4739

    Article  CAS  Google Scholar 

  • Streiblová E (1983) Yeast cell wall, a marked system for cell cycle control. In: Nurse P, Streiblová E (eds) Microbial Cell Cycle. CRC Press, Boca Raton, pp 127–141

    Google Scholar 

  • Takeda H, Yasuoka N, Kasai N, Harada T (1978) X-ray structural studies on (1 → 3)-β-d-glucan (curdlan). Polymer J 10: 363–368

    Article  Google Scholar 

  • Vannini GL; Poli F, Donini A, Pancaldi S (1983) Effects of Congo red on wall synthesis and morphogenesis in Saccharomyces cerevisiae. Plant Sci Lett 31: 9–17

    Article  CAS  Google Scholar 

  • Vannini GL, Pancaldi S, Poli F, Dall'olio G (1987) Exocytosis in Saccharomyces cerevisiae treated with congo red. Cytobios 49: 89–97

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In memory of Dr. D. R. Kreger of the University of Groningen, The Netherlands, who died on 7 January 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopecká, M., Gabriel, M. The influence of Congo red on the cell wall and (1 → 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae . Arch. Microbiol. 158, 115–126 (1992). https://doi.org/10.1007/BF00245214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245214

Key words

Navigation