Skip to main content
Log in

Convective instability of a model chromosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The convective stability of a simple model chromosphere is investigated. The model chromosphere consists of protons, electrons, and hydrogen atoms in the ground state; ionization is collisional and recombination is radiative. The analysis indicates stability when the kinetic temperature (T) is less than 17 500K (assuming T increases with height). However, for T > 17 500K, the model chromosphere is overstable in the absence of magnetic fields provided the temperature inversion is sufficiently steep. For smaller values of the temperature gradient, field-free regions are stable if the density is small and monotonically unstable if it is large. In the presence of a magnetic field, the model chromosphere is monotonically unstable for T > 17 500K, regardless of the temperature gradient.

The convective instability of the model chromosphere results from the fact that the plasma is thermally unstable for T > 17 500K. Thermally unstable regions of the solar atmosphere, although not represented in detail by the model, should behave in a similar fashion.

Field-free regions of the solar chromosphere are probably not monotonically unstable, but overstability is possible and may explain the origin of chromospheric oscillations with periods less than 200 sec. It is suggested that spicules result from the monotonic instability of magnetic regions. A similar instability in the corona may be responsible for the large Doppler spreading of radar echoes.

Elementary considerations of thermal balance predict that the temperature gradient should diverge at levels of marginal stability. The chromospheric region of spicule formation and the corona should therefore both be bounded below by abrupt temperature jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athay, R. G.: 1966a, Astrophys. J. 145, 784.

    Google Scholar 

  • Athay, R. G.: 1966b, Astrophys. J. 146, 223.

    Google Scholar 

  • Athay, R. G. and Thomas, R. N.: 1956, Astrophys. J. 123, 299.

    Google Scholar 

  • Beckers, J. M.: 1968, Solar Phys. 3, 367.

    Google Scholar 

  • Bhavilai, R.: 1965, Monthly Notices Roy. Astron. Soc. 130, 411.

    Google Scholar 

  • Buhl, D. and Tlamicha, A.: 1968, Astrophys. J. (Letters) 153, L189.

    Google Scholar 

  • Cox, D. P. and Tucker, W. H.: 1969, Astrophys. J. 157, 1157.

    Google Scholar 

  • Defouw, R. J.: 1970a, Astrophys. J. 160, 659.

    Google Scholar 

  • Defouw, R. J.: 1970b, Astrophys. J. 161, in press.

  • Dupree, A. K. and Goldberg, L.: 1967, Solar Phys. 1, 229.

    Google Scholar 

  • Edmonds, F. N., Jr., Michard, R., and Servajean, R.: 1965, Ann. Astrophys. 28, 534.

    Google Scholar 

  • Evans, J. W. and Michard, R.: 1962, Astrophys. J. 136, 493.

    Google Scholar 

  • Evans, J. W., Michard, R., and Servajean, R.: 1963, Ann. Astrophys. 26, 368.

    Google Scholar 

  • Field, G. B.: 1965, Astrophys. J. 142, 531.

    Google Scholar 

  • James, J. C.: 1966, Astrophys. J. 146, 356.

    Google Scholar 

  • James, J. C.: 1968, in Radar Astronomy (ed. by J. V. Evans and T. Hagfors), McGraw-Hill, p. 369.

  • Jensen, E. and Orrall, F. Q.: 1963, Astrophys. J. 138, 252.

    Google Scholar 

  • Kaplan, W.: 1962, Operational Methods for Linear Systems, Addison-Wesley.

  • Kiepenheuer, K. O.: 1953, in The Sun (ed. by G. P. Kuiper), University of Chicago Press, p. 430.

  • Kopp, R. A.: 1963, unpublished.

  • Kuperus, M. and Athay, R. G.: 1967, Solar Phys. 1, 361.

    Google Scholar 

  • Leighton, R. B., Noyes, R. W., and Simon, G. W.: 1962, Astrophys. J. 135, 474.

    Google Scholar 

  • Linsky, J. L.: 1968, Thesis, Harvard.

  • Meyer, F. and Schmidt, H. U.: 1967, Z. Astrophys. 65, 274.

    Google Scholar 

  • Orrall, F. Q.: 1966, Astrophys. J. 143, 917.

    Google Scholar 

  • Pottasch, S. R.: 1965, Bull. Astron. Inst. Neth. 18, 7.

    Google Scholar 

  • Raju, P. K.: 1968, Monthly Notices Roy. Astron. Soc. 139, 479.

    Google Scholar 

  • Lord Raleigh: 1916, Philosophical Magazine (Series 6) 32, 529.

    Google Scholar 

  • Simon, G. W. and Leighton, R. B.: 1964, Astrophys. J. 140, 1120.

    Google Scholar 

  • Spiegel, E. A. and Veronis, G.: 1960, Astrophys. J. 131, 442.

    Google Scholar 

  • Thomas, R. N. and Athay, R. G.: 1961, Physics of the Solar Chromosphere, Interscience, New York.

    Google Scholar 

  • Title, A. M.: 1966, Thesis, Cal. Inst. of Technology.

  • Ulmschneider, P. H.: 1968, Astrophys. J. 152, 349.

    Google Scholar 

  • Veronis, G.: 1965, J. Marine Res. 23, 1.

    Google Scholar 

  • Veronis, G.: 1968, J. Fluid Mech. 34, 315.

    Google Scholar 

  • Weiss, N. O.: 1964, Philos. Trans. Roy. Soc. A256, 99.

    Google Scholar 

  • Weymann, R.: 1960, Astrophys. J. 132, 452.

    Google Scholar 

  • Whitaker, W. A.: 1963, Astrophys. J. 137, 914.

    Google Scholar 

  • Zirin, H.: 1966, The Solar Atmosphere, Blaisdell, Waltham, Mass.

    Google Scholar 

  • Zirin, H. and Dietz, R. D.: 1963, Astrophys. J. 138, 664.

    Google Scholar 

  • Zirin, H. and Howard, R.: 1966, Astrophys. J. 146, 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Defouw, R.J. Convective instability of a model chromosphere. Sol Phys 14, 42–61 (1970). https://doi.org/10.1007/BF00240159

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240159

Keywords

Navigation