Skip to main content
Log in

The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

The abundance and depth distribution of zooplankton faeces in spring to early summer were investigated along meridional transects (47°W and 49°W) that extended from the Scotia Sea (57°S) across the Weddell-Scotia Confluence and into the Weddell Gyre (62°S). The sea ice edge retreated from 59°30′S to 61°S during the study. Faeces were sampled with nets, Niskin bottles and sediment traps and subsequently analysed by light and electron (SEM) microscopy. Krill faecal strings and oval faecal pellets of unknown origin were by far the most important zooplankton faeces and highest concentrations were always found in the Confluence often close to the ice border. Krill faeces were usually more abundant in the uppermost layer (0–50m) where they contributed an average of 130 μg dry weight m−3. There was an exponential decrease with depth, with a minimum of 0.6 μg dry weight m−3 in the 500–1000 m stratum. Oval pellets were more evenly distributed in the upper 1000 m of the water column, with an average of 9 μg dry weight m −3, although there was a small peak (20 μg dry weight m−3) in the subsurface layer (50–150 m depth). Consecutive collections (day-night) of krill faeces using drifting sediment traps showed that only the larger strings sank from 50 to 150 m depth. Peritrophic membranes appeared to deteriorate during sinking. Diatoms (in particular Nitzschia and Thalassiosira spp.) contributed by far the bulk of material in krill and oval faeces. In samples collected near or under the pack ice, remains of crustaceans in both krill- and oval faeces were also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bathmann UV, Noji TT, Voss M, Peinert R (1987) Copepod fecal pellets: abundance sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar Ecol Prog Ser 38:45–51

    Google Scholar 

  • Bathmann U, Fischer G, Müller PJ, Gerdes D (1991) Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185–195

    Google Scholar 

  • Bodungen B von (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica. — Implications from sediment trap collections. Polar Biol 6:153–160

    Google Scholar 

  • Bedungen B von, Fischer G, Nothig E-M, Wefer G (1987) Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica. In: Degens ET, Honjo S, Izdar E (eds) Particle flux in the ocean. Mitteilungen aus dem Geologisch-Paleontologischen Institut der Universität Hamburg, SCOPE UNEP, Sonderband 62:243–257

  • Bodungen B von, Nöthig E-M, Sui Q (1988) New production of phytoplankton and sedimentation during summer 1985 in the southeastern Weddell-Sea. J Comp Biochem Physiol 90B:474–487

    Google Scholar 

  • Boyd CM, Heyraud M, Boyd CN (1984) Feeding of the Antarctic krill Euphausia superba. J Crust Biol 4, Spec 1:123–141

    Google Scholar 

  • Buck KR, Garrison DL (1983) Protist from the ice-edge region of the Weddell Sea. Deep-Sea Res 30:1261–1277

    Google Scholar 

  • Cadée GC, González HE, Schiel S (1992) Krill diet affects faecal string settling. Polar Biol 12:75–80

    Google Scholar 

  • Cederlöf U, Ober S, Schmidt R, Svansson A, Veth C (1989) Physics and chemistry. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition ANTARCTIS VII/3 (EPOS leg 2) of RV Polarstern in 1988/1989. Ber Polarforsch 65:14–19

  • Cuzin-Roudy J, Schalk PH (1989) Macrozooplankton: Biomass, development and activity. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition ANTARCTIS VII/3 (EPOS leg 2) of RV Polarstern in 1988/1989. Ber Polarforsch 65:146–159

  • Daly KL, Macaulay MC (1988) Abundance and distribution of krill in the ice edge zone of the Weddell Sea, austral spring 1983. DeepSea Res A 35:21–42

    Google Scholar 

  • Edler L (1979) Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. BMB Publ 5:1–38

    Google Scholar 

  • Fischer G, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal Variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Google Scholar 

  • González H, Biddanda B (1990) Microbial transformation of metazoan (Idotea granulosa) faeces. Mar Biol 106:285–295

    Google Scholar 

  • Ishii H, Omori M, Murano M (1985) Feeding behaviour of the Antarctic krill, Euphausia superba Dana I. Reaction to size and concentration of food particles. Trans Tokyo Univ Fish 6:117–124

    Google Scholar 

  • Jacques G, Panouse M (1989) Phytoplankton, protozooplankton and bacterioplankton. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition ANTRACTIS VII/3 (EPOS leg 2) of RV Polarstern in 1988/1989. Ber Polarforsch 65:61–67

  • Krause M (1981) Vertical distribution of faecal pellets during FLEX '76. Helgol Meeresunters 34:313–327

    Google Scholar 

  • Lampitt RS, Noji T, Bodungen B von (1990) What happens to zooplankton faecal pellets? Implications for material flux. Mar Biol 104:15–23

    Google Scholar 

  • Longhurst AL, Harrison WG (1989) The biological pump: Profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123

    Article  Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Rep 32:33–464

    Google Scholar 

  • Marschall H-P (1988) The overwintering strategy of antarctic krill under the pack-ice of the Weddell Sea. Polar Biol 9:129–135

    Google Scholar 

  • Martens P, Krause M (1990) The fate of faecal pellets in the North Sea. Helgol Meeresunters 44:9–19

    Google Scholar 

  • Miller DGM, Hampton I, Henry J, Abrams RW, Cooper J (1985) The relationship between krill food requirements and phytoplankton production in a sector of the southern Indian Ocean. In: Siegfried WR, Condy PR, Laws M (eds) Antarctic nutrient cycles and food web. Springer, Berlin Heidelberg, pp 362–371

    Google Scholar 

  • Noji TT (1991) The influence of macrozooplankton on vertical particulate flux. Sarsia 76:1–9

    Google Scholar 

  • Noji TT, Estep KW, MacIntyre F, Norrbin F (1991) Image analysis of faecal material grazed upon by three species of copepods. Evidence for coprorhexy, coprophagy and coprochaly. J Mar Biol Assoc UK 71:465–480

    Google Scholar 

  • O'Brian DP (1988) Direct observations of the behavior of Euphausia superba and Euphausia crystallorophias (Crustacea: Euphausiacea) under pack ice during the Antarctic spring of 1985. J Crust Biol 7:437–448

    Google Scholar 

  • Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Mar Biol 97:67–77

    Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggegation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248

    Google Scholar 

  • Schalk PH (1990) Biological activity in the Antarctic zooplankton community. Polar Biol 10:405–411

    Google Scholar 

  • Schnack SB (1985) A note on the sedimentation of particulate matter in Antarctic waters during summer. Meeresforschung 30:306–315

    Google Scholar 

  • Smetacek V (1980) Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Est Coast Mar Sci 11:477–490

    Google Scholar 

  • Smetacek V, Scharek R, Nöthig E-M (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin Heidelberg, pp 103–114

    Google Scholar 

  • Sprong I, Schalk PH (in press) Acoustic observations on krill spring-summer migration and patchiness in the Weddell Sea. Polar Biol

  • Wefer G, Fischer G, Fütterer D, Gersonde R (1988) Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res 35:891–898

    Google Scholar 

  • Wefer G (1989) Particle flux in the ocean: Present and past. In: Berger WH, Smetacek VS, Wefer G (eds) Dahlem Konferenzen. Wiley, Chichester, pp 139–154

    Google Scholar 

  • Weikert H, John H-Ch (1981) Experiences with a modified Bé multiple opening-closing plankton net. J Plankton Res 3:167–176

    Google Scholar 

  • Zeitzschel B, Diekmann P, Uhlmann L (1978) A new multisample sediment trap. Mar Biol 45:285–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, H.E. The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol 12, 81–91 (1992). https://doi.org/10.1007/BF00239968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239968

Keywords

Navigation