Skip to main content
Log in

The depolarization of feline ventral horn group Ia spinal afferent terminations by GABA

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The unmyelinated terminal regions of extensor muscle Ia afferent fibres were stimulated electrically near lumbar motoneurones in anaesthetised cats using 300 μs pulses of less than 1 μA passed through the central NaCl barrel of seven barrel micropipettes. Such terminations were identified by anodal blocking factors of less than four and the latency of the antidromic impulse recorded in the appropriate peripheral muscle nerve.

Although the effects of microelectrophoretically administered GABA were occasionally complex, the most consistent finding was a reduction in termination threshold followed by an increase. Both this reduction in threshold by GABA, and that produced by tetanic stimulation of low threshold flexor afferents (PAD) were diminished by microelectrophoretic bicuculline methochloride. This GABA antagonist alone elevated the threshold of some terminations but did not reduce the depolarizing action of either potassium or L-glutamate. Furthermore, since reductions in threshold by GABA, but not by either potassium or L-glutamate, were associated with a decrease in PAD, GABA appears to increase terminal membrane conductance.

Since neither GABA nor bicuculline methochloride influenced the threshold or afferent depolarization of non-terminal regions of Ia fibres, these results are consistent with the function of GABA as a depolarizing transmitter at gabergic axoaxonic synapses upon the terminals of Ia afferent fibres synapsing with motoneurones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abzug C, Maeda M, Peterson BW, Wilson VJ (1974) Cervical branching of lumbar vestibulospinal axons. J Physiol (Lond) 243: 499–522

    CAS  Google Scholar 

  • Adams PR, Brown DA (1975) Actions of γ-aminobutyric acid on sympathetic ganglion cells. J Physiol (Lond) 250: 85–120

    CAS  Google Scholar 

  • Andersen P, Curtis DR (1964) The excitation of thalamic neurones by acetylcholine. Acta Physiol Scand 61: 85–99

    Article  PubMed  CAS  Google Scholar 

  • Arbilla S, Kamal L, Langer SZ (1979) Presynaptic GABA autoreceptors on gabaergic nerve endings of the rat substantia nigra. Eur J Pharmacol 57: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw EV, Evans MH (1976) Measurement of current spread from microelectrodes when stimulating within the nervous system. Exp Brain Res 25: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Lundberg A, Udo M (1972) Stimulation of pre- and postsynaptic elements in the red nucleus. Exp Brain Res 15: 151–167

    PubMed  CAS  Google Scholar 

  • Barber RP, Vaughn JE, Saito K, McLaughlin BJ, Roberts E (1978) GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 141: 35–55

    Article  PubMed  CAS  Google Scholar 

  • BeMent SL, Ranck JB, Jr (1969) A quantitative study of electrical stimulation of central myelinated fibers. Exp Neurol 24: 147–170

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Brown DA (1974) Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50: 205–218

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hudson AL (1979) γ-Aminobutyric acid reduces the evoked release of [3H]-noradrenaline from sympathetic nerve terminals. Br J Pharmacol 66: 108P

  • Bowery NG, Jones GP (1976) A comparison of γ-aminobutyric acid and the semi-rigid analogues 4-aminotetrolic acid, 4- aminocrotonic acid and imidazole-4-acetic acid on the isolated superior cervical ganglion of the rat. Br J Pharmacol 56: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Brown DA, Collins JF (1975) Tetramethylenedisulphotetramine: An inhibitor of γ-aminobutyric acid induced depolarization of the isolated superior cervical ganglion of the rat. Br J Pharmacol 53: 422–424

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Collins JF, Hill RG (1976) Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261: 601–603

    Article  PubMed  CAS  Google Scholar 

  • Brooks CMcC, Eccles JC (1947) Electrical investigation of the monosynaptic pathway through the spinal cord. J Neurophysiol 10: 251–274

    PubMed  CAS  Google Scholar 

  • Brown AG, Fyffe REW (1978) The morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. J Physiol (Lond) 274: 111–127

    CAS  Google Scholar 

  • Brown AG, Fyffe REW (1979) The morphology of group Ib afferent fibre collaterals in the spinal cord of the cat. J Physiol (Lond) 296: 215–228

    CAS  Google Scholar 

  • Brown AG, Fyffe REW (1981) Direct observations on the contacts made between Ia afferent fibres and α-motoneurones in the cat's lumbosacral spinal cord. J Physiol (Lond) 313: 121–140

    CAS  Google Scholar 

  • Brown DA, Higgins AJ (1979) Presynaptic effects of γ-aminobutyric acid in isolated rat superior cervical ganglia. Br J Pharmacol 66: 108–109P

    Article  Google Scholar 

  • Brown DA, Marsh S (1978) Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res 156: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Walmsley B, Hodgson JA (1979) HRP anatomy of group Ia afferent contacts on alpha motoneurones. Brain Res 160: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Carlen PL, Werman R, Yaari Y (1980) Post-synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones. J Physiol (Lond) 298: 539–556

    CAS  Google Scholar 

  • Conradi S (1969a) Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand [Suppl] 332: 5–48

    CAS  Google Scholar 

  • Conradi S (1969b) Ultrastructure of dorsal root boutons on lumbosacral motoneurons of the adult cat, as revealed by dorsal root section. Acta Physiol Scand [Suppl] 332: 85–111

    CAS  Google Scholar 

  • Curtis DR (1964) Microelectrophoresis. In: Nastuk WL (ed) Physical techniques in biological research, vol 5. Academic Press, New York, pp 144–190

    Google Scholar 

  • Curtis DR (1976) The use of transmitter antagonists in microelectrophoretic investigations of central synaptic transmission. In: Bradley PB, Dhawan BN (eds) Drugs and central synaptic transmission. MacMillan, London, pp 7–35

    Google Scholar 

  • Curtis DR (1978a) Pre- and non-synaptic activities of GABA and related amino acids in the mammalian nervous system. In: Fonnum F (ed) Amino acids as chemical transmitters. Plenum Press, New York, pp 55–86

    Chapter  Google Scholar 

  • Curtis DR (1978b) Pre- and postsynaptic action of GABA in the mammalian spinal cord. In: Simon P (ed) Advances in pharmacology and therapeutics, vol 2, Neurotransmitters. Pergamon Press, New York, pp 281–298

    Google Scholar 

  • Curtis DR (1978c) Continuous monitoring of threshold electrical stimuli. Proc Aust Physiol Pharmacol Soc 9: 99P

  • Curtis DR (1979) A method for continuously monitoring the electrical threshold of single intraspinal nerve fibres. Electroen Neurophysiol 47: 503–506

    Article  CAS  Google Scholar 

  • Curtis DR, Lodge D (1978) GABA depolarization of spinal group I afferent terminals. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier/North-Holland Biomédical Press, Amsterdam, pp 258–260

    Google Scholar 

  • Curtis DR, Ryall RW (1966) Pharmacological studies upon spinal presynaptic fibres. Exp Brain Res 1: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston GAR (1971) Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord. Brain Res 32: 69–96

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Lodge D, Brand SJ (1977) GABA and spinal afferent terminal excitability in the cat. Brain Res 130: 360–363

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Bornstein JC, Lodge D (1980) In vivo analysis of GABA receptors on primary afferent terminations in the cat. Brain Res 194: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Lodge D, Bornstein JC, Peet MJ (1981) Selective effects of (−) — baclofen on spinal synaptic transmission in the cat. Exp Brain Res 42: 158–170

    Article  PubMed  CAS  Google Scholar 

  • Deschenes M, Feltz P, Lamour Y (1976) A model for an estimate in vivo of the ionic basis of presynaptic inhibition: An intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res 118: 486–493

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Eccles RM, Magni F (1961) Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol (Lond) 159: 147–166

    CAS  Google Scholar 

  • Eccles JC, Magni F, Willis WD (1962) Depolarization of central terminals of group I afferent fibres from muscle. J Physiol (Lond) 160: 62–93

    CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963a) Pharmacological studies on presynaptic inhibition. J Physiol (Lond) 168: 500–530

    CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963b) The location and the mode of action of the presynaptic inhibitory pathways on to group I afferent fibers from muscle. J Neurophysiol 26: 506–522

    Google Scholar 

  • Evans RH (1980) Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids. J Physiol (Lond) 298: 25–35

    CAS  Google Scholar 

  • Feltz P, Rasminsky M (1974) A model for the mode of action of GABA on primary afferent terminals: Depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology 13: 553–563

    Article  PubMed  CAS  Google Scholar 

  • Fu TC, Schomburg ED (1974) Electrophysiological investigation of the projection of secondary muscle spindle afferents in the cat spinal cord. Acta Physiol Scand 91: 314–329

    Article  PubMed  CAS  Google Scholar 

  • Fyffe REW (1979) The morphology of group II muscle afferent fibre collaterals. J Physiol (Lond) 296: 39–40P

    Google Scholar 

  • Gallagher JP, Higashi H, Nishi S (1978) Characterization and ionic basis of GABA-induced depolarization recorded in vitro from cat primary afferent neurones. J Physiol (Lond) 275: 263–282

    CAS  Google Scholar 

  • Galvan M, Grafe P, Bruggencate ten G (1980) Presynaptic actions of 4-aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro. Naunyn-Schmiedebergs Arch Pharmacol 314: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Gmelin G, Cerletti A (1976) Electrophoretic studies on presynaptic inhibition in the mammalian spinal cord. Experientia 32: 756

    Google Scholar 

  • Groat WC De (1970) The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J Pharmacol Exp Ther 172: 384–396

    PubMed  Google Scholar 

  • Groat WC De (1972) GABA-depolarization of a sensory ganglion: Antagonism by picrotoxin and bicuculline. Brain Res 38: 429–432

    Article  PubMed  Google Scholar 

  • Groat WC De, Lalley PM (1973) Interaction between picrotoxin and 5-hydroxytryptamine in the superior cervical ganglion of the cat. Br J Pharmacol 48: 233–244

    Article  PubMed  Google Scholar 

  • Groat WC De, Lalley PM, Block M (1971) The effects of bicuculline and GABA on the superior cervical ganglion of the cat. Brain Res 25: 665–668

    Article  Google Scholar 

  • Groat WC De, Lalley PM, Saum WR (1972) Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: Antagonism by picrotoxin and bicuculline. Brain Res 44: 273–277

    Article  PubMed  Google Scholar 

  • Gustafsson B, Jankowska E (1976) Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. J Physiol (Lond) 258: 33–61

    CAS  Google Scholar 

  • Hösli L, Hösli E, Andres PF, Landolt H (1981) Evidence that the depolarization of glial cells by inhibitory amino acids is caused by an efflux of K+ from neurones. Exp Brain Res 42: 43–48

    Article  PubMed  Google Scholar 

  • Hunt CC (1974) The physiology of muscle receptors. In: Hunt CC (ed) Handbook of sensory physiology, vol III/2. Springer, Berlin Heidelberg New York, pp 191–234

    Google Scholar 

  • Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: Three dimensional reconstructions from serial sections. J Comp Neurol 186: 189–212

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Roberts WJ (1972) An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J Physiol (Lond) 222: 597–622

    CAS  Google Scholar 

  • Jankowska E, Smith DO (1973) Antidromic activation of Renshaw cells and their axonal projections. Acta Physiol Scand 88: 198–214

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Padel Y, Tanaka R (1975) The mode of activation of pyramidal tract cells by intracortical stimuli. J Physiol (Lond) 249: 617–636

    CAS  Google Scholar 

  • Kato E, Kuba K (1980) Inhibition of transmitter release in bullfrog sympathetic ganglia induced by γ-aminobutyric acid. J Physiol (Lond) 298: 271–283

    CAS  Google Scholar 

  • Kato E, Morita K, Kuba K, Yamada S, Kuhara T, Shinka T, Matsumoto I (1980) Does γ-aminobutyric acid in blood control transmitter release in bullfrog sympathetic ganglia. Brain Res 195: 208–214

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1965) Propagation of electric activity in motor nerve terminals. Proc R Soc (Lond) [Biol] 161: 453–482

    Article  CAS  Google Scholar 

  • Koslow M, Bak A, Li CL (1973) C-Fiber excitability in the cat. Exp Neurol 41: 745–753

    Article  PubMed  CAS  Google Scholar 

  • Krantis A, Costa M, Furness JB, Orbach J (1980) γ-Aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. Eur J Pharmacol 67: 461–468

    Article  PubMed  CAS  Google Scholar 

  • Krnjević K, Phillis JW (1963) Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol (Lond) 165: 274–304

    Google Scholar 

  • Krnjević K, Schwartz S (1967) Some properties of unresponsive cells in the cerebral cortex. Exp Brain Res 3: 306–319

    Article  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Hjeds H, Curtis DR, Lodge D, Johnston GAR (1979) Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem 32: 1717–1724

    Article  PubMed  CAS  Google Scholar 

  • Levy RA (1975) The effect of intravenously administered γ-aminobutyric acid on afferent fiber polarization. Brain Res 92: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Levy RA (1977) The role of GABA in primary afferent depolarization. Prog Neurobiol 9: 211–267

    Article  PubMed  CAS  Google Scholar 

  • Levy RA (1980) Presynaptic control of input to the central nervous system. Can J Physiol Pharmacol 58: 751–766

    Article  CAS  Google Scholar 

  • Levy RA, Anderson EG (1972) The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Brain Res 43: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE (1976) Decreased conduction velocity in the proximal projections of myelinated dorsal root ganglion cells in the cat. Brain Res 103: 381–385

    Article  PubMed  CAS  Google Scholar 

  • Lorente deNó R (1939) Transmission of impulses through cranial motor nuclei. J Neurophysiol 2: 402–464

    Google Scholar 

  • McLaughlin BJ (1972a) The fine structure of neurons and synapses in the motor nuclei of the cat spinal cord. J Comp Neurol 144: 429–460

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin BJ (1972b) Dorsal root projections to the motor nuclei in the cat spinal cord. J Comp Neurol 144: 461–474

    Article  Google Scholar 

  • McLaughlin BJ, Barber R, Saito K, Roberts E, Wu JY (1975) Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol 164: 305–322

    Article  PubMed  CAS  Google Scholar 

  • Madrid J, Alvarado J, Dutton H, Rudomin P (1979) A method for the dynamic continuous estimation of excitability changes of single fiber terminals in the central nervous system. Neurosci Lett 11: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Mathison R, Dreifuss JJ (1981) Chloride-dependent action of GABA on the infundibular-neurohypophysial compound action potential. Neurosci Lett 22: 309–312

    Article  CAS  Google Scholar 

  • Merrill EG, Yaksh TL (1978) Properties of cerebellum parallel fibres and the Lissauer tract of the cat. J Physiol (Lond) 275: 71–72P

    Google Scholar 

  • Merrill EG, Wall PD, Yaksh TL (1978) Properties of two unmyelinated fibre tracts of the central nervous system: Lateral Lissauer tract, and parallel fibres of the cerebellum. J Physiol (Lond) 284: 127–145

    CAS  Google Scholar 

  • Mitchell PR, Martin IL (1978) Is GABA release modulated by presynaptic receptors? Nature 274: 904–905

    Article  PubMed  CAS  Google Scholar 

  • Munson JB, Sypert GW (1979) Properties of single central Ia afferent fibres projecting to motoneurones. J Physiol (Lond) 296: 315–327

    CAS  Google Scholar 

  • Munson JB, Fleshman JW, Sypert GW (1980) Properties of single-fiber spindle group II EPSPs in triceps surae motoneurons. J Neurophysiol 44: 713–725

    PubMed  CAS  Google Scholar 

  • Ralston HJ, Ralston DD (1979) Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography. J Neurocytol 8: 151–166

    Article  PubMed  CAS  Google Scholar 

  • Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res 98: 417–440

    Article  PubMed  Google Scholar 

  • Renshaw B (1940) Activity in the simplest spinal reflex pathways. J Neurophysiol 3: 373–387

    Google Scholar 

  • Roberts WJ, Smith DO (1973) Analysis of threshold currents during microstimulation of fibres in the spinal cord. Acta Physiol Scand 89: 384–394

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Stefani E, Werman R (1979) Voltage sensitivity of small, focal transient potassium depolarizations in snail neurons: Relevance for diagnosis of chemical synaptic activity. J Neurophysiol 42: 912–924

    PubMed  CAS  Google Scholar 

  • Rudomin P, Engberg I, Jankowska E, Jimenez I (1980) Evidence of two different mechanisms involved in the generation of presynaptic depolarization of afferent and rubrospinal fibers in the cat spinal cord. Brain Res 189: 256–261

    Article  PubMed  CAS  Google Scholar 

  • Sastry BR (1979) γ-Aminobutyric acid and primary afferent depolarization in feline spinal cord. Can J Physiol Pharmacol 57: 1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergebn Physiol 63: 20–101

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF (1973) Control of the access of afferent activity to somatosensory pathways. In: Iggo A (ed) Handbook of sensory physiology, vol II, Somatosensory system. Springer, Berlin Heidelberg New York, pp 151–206

    Chapter  Google Scholar 

  • Shinoda Y, Arnold AP, Asanuma H (1976) Spinal branching of corticospinal axons in the cat. Exp Brain Res 26: 215–234

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Ghez C, Arnold A (1977) Spinal branching of rubrospinal axons in the cat. Exp Brain Res 30: 203–218

    PubMed  CAS  Google Scholar 

  • Shinoda Y, Zarzecki P, Asanuma H (1979) Spinal branching of pyramidal tract neurons in the monkey. Exp Brain Res 34: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Ann Rev Physiol 41: 159–177

    Article  CAS  Google Scholar 

  • Stoney SD, Thompson WD, Asanuma H (1968) Excitation of pyramidal tract cells by intracortical microstimulation: Effective extent of stimulating current. J Neurophysiol 31: 659–669

    PubMed  Google Scholar 

  • Sverdlov YS, Kozhechkin SN (1975) Effects of glycine and gamma-aminobutyric acid on excitability of central terminals of primary afferent fibres. Neurophysiology USSR 7: 388–394

    CAS  Google Scholar 

  • Sypert GW, Munson JB, Fleshman JW (1980) Effect of presynaptic inhibition on axonal potentials, focal synaptic potentials, and EPSPs in cat spinal cord. J Neurophysiol 44: 792–803

    PubMed  CAS  Google Scholar 

  • Watt DGD, Stauffer EK, Taylor A, Reinking RM, Stuart DG (1976) Analysis of muscle receptor connections by spike-triggered averaging. 1. Spindle primary and tendon organ afferents. J Neurophysiol 39: 1375–1392

    PubMed  CAS  Google Scholar 

  • Willis WD, Núnez R, Rudomin P (1976) Excitability changes of terminal arborization of single Ia and Ib afferent fibers produced by muscle and cutaneous conditioning volleys. J Neurophysiol 39: 1150–1159

    PubMed  CAS  Google Scholar 

  • Wood JG, McLaughlin BJ, Vaughn JE (1976) Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function. Raven Press, New York, pp 133–148

    Google Scholar 

  • Zingg HH, Baertschi AJ, Dreifuss JJ (1979) Action of γ-aminobutyric acid on hypothalamo-neurohypophysial axons. Brain Res 171: 453–459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, D.R., Lodge, D. The depolarization of feline ventral horn group Ia spinal afferent terminations by GABA. Exp Brain Res 46, 215–233 (1982). https://doi.org/10.1007/BF00237180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237180

Key words

Navigation