Skip to main content
Log in

Visual resolution, contrast sensitivity, and the cortical magnification factor

  • Original Articles
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

This study shows that photopic contrast sensitivity and resolution can be predicted by means of simple functions derived by using the cortical magnification factor M as a scale factor of mapping from the visual field into the striate cortex. We measured the minimum contrast required for discriminating the direction of movement or orientation of sinusoidal gratings, or for detecting them in central and peripheral vision. No qualitative differences were found between central and peripheral vision, and almost all quantitative differences observed could be removed by means of a size compensation derived from M.

The results indicated specificly that (1) visual patterns can be made equally visible if they are scaled so that their calculated cortical representations become equivalent; (2) contrast sensitivity follows the same power function of the cortical area stimulated by a grating at any eccentricity; (3) area and squared spatial frequency are reciprocally related as determinants of contrast sensitivity; and (4) acuity and resolution are directly proportional to M, and the minimum angle of resolution is directly proportional to M-1.

The power law of spatial summation expressed in (2) and (3) suggests the existence of a central integrator that pools the activity of cortical neurons. This summation mechanism makes the number of potentially activated visual cells the most important determinant of visibility and contrast sensitivity. The functional homogeneity of image processing across the visual field observed here agrees with the assumed anatomical and physiological uniformity of the visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, K.: A quantiative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res. 24, 159–179 (1975)

    Google Scholar 

  • Anstis, S.M.: A chart demonstrating variations in acuity with retinal position. Vision Res. 14, 589–592 (1974)

    Google Scholar 

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969)

    Google Scholar 

  • Brindley, G.S., Lewin, W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196, 479–493 (1968)

    Google Scholar 

  • Campbell, F.W., Gubish, R.W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966)

    Google Scholar 

  • Campbell, F.W., Robson, J.G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968)

    Google Scholar 

  • Cowan, J.D.: Some remarks on channel bandwidths for visual contrast detection. Neurosci. Res. Progr. Bull, 15, 492–517 (1977)

    Google Scholar 

  • Cowey, A., Rolls, E.T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1974)

    Google Scholar 

  • Creutzfeldt, O. D., Elepfandt, A., Lee, B. B., Virsu, V.: Light adaptation of LGN cells in the cat and monkey. J. Physiol. (Lond.) (in press) (1979)

  • Creutzfeldt, O., Innocenti, G.M., Brooks, D.: Vertical organization in the visual cortex (area 17) in the cat. Exp. Brain Res. 21, 315–336 (1974)

    Google Scholar 

  • Creutzfeldt, O.D., Kuhnt, U.: Electrophysiology and topographical distribution of visual evoked potentials in animals. In: Handbook of sensory physiology, Jung, R. (ed.). Vol. VII/3B, pp. 595–646. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961)

    Google Scholar 

  • De Monasterio, F.M., Gouras, P.: Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 167–195 (1975)

    Google Scholar 

  • Doorn, A.J., van Koenderink, J.J., Bouman, M.A.: The influence of the retinal inhomogeneity on the perception of spatial patterns. Kybernetik 10, 223–230 (1972)

    Google Scholar 

  • Drasdo, N.: The neural representation of visual space. Nature (Lond.) 266, 554–556 (1977)

    Google Scholar 

  • Enoch, J.M., Hope, G.M.: Interferometric resolution determinations in the fovea and parafovea. Doc. Ophthal. 34, 143–156 (1973)

    Google Scholar 

  • Frisén, L., Glansholm, A.: Optical and neural resolution in peripheral vision. Invest. Ophthal. 14, 528–536 (1975)

    Google Scholar 

  • Georgeson, M.A., Sullivan, G.D.: Contrast constancy: Deblurring in human vision by spatial frequency channels. J. Physiol. (Lond.) 252, 627–656 (1975)

    Google Scholar 

  • Gordon, J., Abramov, I.: Color vision in the peripheral retina. II. Hue and saturation. J. Opt. Soc. Am. 67, 202–207 (1977)

    Google Scholar 

  • Green, D.G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351–356 (1970)

    Google Scholar 

  • Hilz, R., Cavonius, C.R.: Functional organization of the peripheral retina: Sensitivity to periodic stimuli. Vision Res. 14, 1333–1337 (1974)

    Google Scholar 

  • Hoekstra, J., Goot, D.P.J. van der, Brink, G. van den, Bilsen, F.A.: The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns. Vision Res. 14, 365–368 (1974)

    Google Scholar 

  • Holmes, G.: The organization of the visual cortex in man. Proc. Roy. Soc. B 132, 348–361 (1945)

    Google Scholar 

  • Howell, E.R., Hess, R.F.: The functional area for summation to threshold for sinusoidal gratings. Vision Res. 18, 369–374 (1978)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–306 (1974)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. Roy. Soc. Lond. B 198, 1–59 (1977)

    Google Scholar 

  • Hughes, A.:The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In: Handbook of sensory physiology, Crescitelli, F. (ed.). Vol. VII/5, pp. 613–756. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Jay, B.S.: The effective pupillary area at varying perimetric angles. Vision Res. 1, 418–424 (1962)

    Google Scholar 

  • Kelly, D.H.: Visual contrast sensitivity. Optica Acta 24, 107–129 (1977)

    Google Scholar 

  • Koenderink, J.J., Bouman, M.A., Bueno de Mesquita, A.E., Slappendel, S.: Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. J. Opt. Soc. Am. 68, 854–860 (1978a)

    Google Scholar 

  • Koenderink, J.J., Bouman, M.A., Bueno de Mesquita, A.E., Slappendel, S.: Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance. J. Opt. Soc. Am 68, 860–865 (1978b)

    Google Scholar 

  • McCann, J.J.: Visibility of gradients and low spatial frequency sinusoids: Evidence for a distance constancy mechanism. Photogr. Sci. Eng. 22, 64–68 (1978)

    Google Scholar 

  • Meeteren, A. van: Calculations on the optical modulation transfer function of the human eye for white light. Optica Acta 21, 395–412 (1974)

    Google Scholar 

  • Pöppel, E., Harvey, Jr. L.O.: Light-difference threshold and subjective brightness in the periphery of the visual field. Psychol. Forsch. 36, 145–161 (1973)

    Google Scholar 

  • Rempt, F., Hoogerheide, J., Hoogenboom, W.P.H.: Influence of correction of peripheral refractive errors on peripheral static vision. Ophthalmologica (Basel) 173, 128–135 (1976)

    Google Scholar 

  • Robson, J.G.: Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am 56, 1141–1142 (1966)

    Google Scholar 

  • Röhler, R.: Die Abbildungseigenschaften der Augenmedien. Vision Res. 2, 391–429 (1962)

    Google Scholar 

  • Rovamo, J., Virsu, V.: An estimation and application of the human cortical magnification factor. Exp. Brain Res. 37, 1–20 (1979)

    Google Scholar 

  • Rovamo, J., Virsu, V., Näsänen, R.: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature (Lond.) 271, 54–56 (1978)

    Google Scholar 

  • Savoy, R.L., McCann, J.J.: Visibility of low-spatial-frequency sine-wave targets: Dependence on number of cycles. J. Opt. Soc. Am. 65, 343–350 (1975)

    Google Scholar 

  • Sharpe, C.R.: The contrast sensitivity of the peripheral visual field to drifting sinusoidal gratings. Vision Res. 14, 905–906 (1974)

    Google Scholar 

  • Virsu, V., Laurinen, P.: Long-lasting afterimages caused by neural adaptation. Vision Res. 17, 853–860 (1977)

    Google Scholar 

  • Wertheim, T.: Über die indirekte Sehschärfe. Z. Psychol. Physiol. Sinnesorg. 7, 172–187 (1894)

    Google Scholar 

  • Wetherill, G.B., Levitt, H.: Sequential estimation of points on a psychometric function. Br. J. Math. Stat. Psychol. 18, 1–10 (1965)

    Google Scholar 

  • Wilson, M.E.: Invariant features of spatial summation with changing locus in the visual field. J. Physiol. (Lond.) 207, 611–622 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virsu, V., Rovamo, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp Brain Res 37, 475–494 (1979). https://doi.org/10.1007/BF00236818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236818

Key words

Navigation