Skip to main content
Log in

Effects of lesioning the anterior suprasylvian cortex on visuo-motor guidance performance in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Seven cats were trained to press a lever that moved in front of them at an adjustable speed and at random from left to right or from right to left. Efficient presses were reinforced by food. After measuring accuracy and latency of pressing the lever, the animals underwent bilateral ablation of the suprasylvian (SS) cortex; in three animals the lesions involved its anterior aspect; in two animals, they were restricted to its middle portion; two others cats had lesions of both anterior and the middle SS cortex. No long-lasting postoperative deficits were observed in any group when the lever remained immobile. On the other hand, the scores after anterior SS lesions were severely deteriorated, when presses had to be performed on the moving lever. No such deficits were noticed when the ablations were restricted to the middle SS. These results suggest that the cat anterior suprasylvian cortex (that includes parts of areas 5 and 7) plays a determinant role in the spatial adjustment of a visually guided (or visually triggered) forelimb movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albe-Fessard D, Besson JM (1973) Convergent thalamic and cortical projections. The non-specific system. In: Iggo A (ed) Handbook of sensory physiology, vol II. Springer, Berlin Heidelberg New York, pp 489–560

    Google Scholar 

  • Baumann TP, Spear PD (1977) Role of the lateral suprasylvian visual area in behavioral recovery from effects of visual cortex damage in cats. Brain Res 138: 445–468

    Google Scholar 

  • Buser P, Bignall KE (1967) Non-primary sensory projections onto the cat neocortex. Int Rev Neurobiol 10: 111–165

    Google Scholar 

  • Buser P, Borenstein P, Bruner J (1959) Etude des systèmes “associatifs” visuels et auditifs chez le chat anesthésié au chloralose. Electroencephalogr Clin Neurophysiol 11: 305–324

    Google Scholar 

  • Clare MH, Bishop GH (1954) Responses from an association area secondarily activated from optic cortex. J Neurophysiol 17: 271–277

    Google Scholar 

  • Darian-Smith I, Isbister J, Mok H, Yokota T (1966) Somatic sensory cortical projection areas excited by tactile stimulation of the cat. A triple representation. J Physiol (Lond) 183: 671–689

    Google Scholar 

  • Fabre M, André C, Buser P (1979) Testing visually guided forepaw movements in the cat. Physiol Behav 23: 263–266

    Google Scholar 

  • Fabre M, Buser P (1979) Guidage visuo-moteur chez le chat. Différence d'effets d'une lésion bilatérale du noyau ventral latéral du thalamus effectuée soit avant, soit après apprentissage. CR Acad Sci [D] (Paris) 288: 417–420

    Google Scholar 

  • Fabre M, Buser P (1980) Structures involved in acquisition and performance of visually guided movements. Acta Biol Exp 40: 95–116

    Google Scholar 

  • Faugier S, Frenois C, Stein DG (1978) Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16: 151–158

    Google Scholar 

  • Graybiel AM (1970) Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res 22: 131–136

    Google Scholar 

  • Hara K (1962) Visual defects resulting from prestriate cortical lesions in cats. J Comp Physiol Psychol 55: 293–298

    Google Scholar 

  • Hartje W, Ettlinger G (1974) Reaching in light and dark after unilateral posterior parietal ablations in the monkey. Cortex 9: 346–354

    Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420

    Google Scholar 

  • Heath CJ, Jones EG (1971) The anatomical organization of the suprasylvian gyrus of the cat. Ergeb Anat Entwicklungsgesch 45: 5–64

    Google Scholar 

  • Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97: 673–692

    Google Scholar 

  • Iwamura Y, Tanaka M (1978) Functional organization of receptive fields in the cat somatosensory cortex. II. Second representation of the forepaw in the ansate region. Brain Res 151: 61–72

    Google Scholar 

  • Jasper HH, Ajmone-Marsan C (1954) A stereotaxic atlas of the diencephalon of the cat. Nat Res Council Canada, Ottawa

    Google Scholar 

  • Jones EG, Powell IPS (1968) The ipsilateral cortical connections of the somatic sensory areas in the cat. Brain Res 9: 71–94

    Google Scholar 

  • Lamotte RH, Acuna C (1978) Defects in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Res 139: 309–326

    Google Scholar 

  • Landgren S, Silfvenius H (1968) Projections of the eye and the neck region on the anterior suprasylvian cerebral cortex of the cat. Acta Physiol Scand 74: 340–347

    Google Scholar 

  • Landgren S, Silfvenius H, Wolsk D (1967a) Somato-sensory paths to the second cortical projection area of the group I muscle afferents. J Physiol (Lond) 191: 543–559

    Google Scholar 

  • Landgren S, Silfvenius H, Wolsk D (1967b) Vestibular, cochlear, and trigeminal projections to the cortex in the anterior suprasylvian sulcus of the cat. J Physiol (Lond) 191: 561–573

    Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40: 362–389

    Google Scholar 

  • Meulders M (1970) Intégration centrale des afférences visuelles. J Physiol (Paris) [Suppl 1] 62: 61–109

    Google Scholar 

  • Milner AD, Ockleford EM, Dewar W (1977) Visuo-spatial performance following posterior parietal and lateral frontal lesions in stumptail macaques. Cortex 13: 350–360

    Google Scholar 

  • Mountcastle VB (1975) The view from within. Pathways to the study of perception. Johns Hopkins Med J 136: 109–131

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey. Command functions for operations within the extrapersonal space. J Neurophysiol 38: 875–908

    Google Scholar 

  • Niimi K, Kadota M, Matsushita Y (1974) Cortical projections of the pulvinar nuclear group of the thalamus in the cat. Brain Behav Evol 9: 422–457

    Google Scholar 

  • Oscarsson O, Rosen I (1966) Short-latency projections to the cat's cerebral cortex from skin and muscle afferents in the contralateral forelimb. J Physiol (Lond) 182: 164–184

    Google Scholar 

  • Petrides M, Iversen SD (1979) Restricted posterior parietal lesions in the rhesus monkey and performance on visuo-spatial tasks. Brain Res 161: 63

    Google Scholar 

  • Reinoso-Suarez F (1961) Topographischer Hirnatlas der Katze für experimentelle physiologische Untersuchungen. Merck, Darmstadt

    Google Scholar 

  • Robertson RT, Mayers KS, Teyler JJ, Bettinger LA, Birch H, Davis JL, Phillips DS, Thompson RF (1975) Unit activity in posterior association cortex of cat. J Neurophysiol 38: 780–794

    Google Scholar 

  • Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate. Sensory mechanisms and behavioral modulations. J Neurophysiol 41: 910

    Google Scholar 

  • Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64: 85–102

    Google Scholar 

  • Sasaki K, Matsuda Y, Kawaguchi S, Mizuno N (1972) On the cerebello-thalamo-cerebral pathway for the parietal cortex. Exp Brain Res 16: 89–103

    Google Scholar 

  • Sasaki K, Oka H, Malsuda Y, Shimono T, Mizuno N (1975) Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp Brain Res 23: 91–102

    Google Scholar 

  • Silfvenius H (1972) Properties of cortical group I neurones located in the lower bank of the anterior suprasylvian sulcus of the cat. Acta Physiol Scand 84: 555–576

    Google Scholar 

  • Thompson RF, Johnson RH, Hoopes JJ (1963) Organization of auditory, somatic sensory, and visual projection to association fields of cerebral cortex in the cat. J Neurophysiol 26: 343–364

    Google Scholar 

  • Warren JM, Warren HB, Akert K (1961) “Umweg” learning by cats with lesions in the prestriate association cortex. J Comp Physiol Psychol 54: 629–632

    Google Scholar 

  • Wood CC, Spear PD, Braun JJ (1974) Effects of sequential lesions of suprasylvian gyri and visual cortex on pattern discrimination in the cat. Brain Res 66: 443–466

    Google Scholar 

  • Woolsey CN (1961) Organization of cortical auditory system. In: Rosenblith WA (ed) Sensory communication. Wiley, New York London, pp 235–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the following grants: ERA - CNRS 411; ATP 36-22; Fondation pour la Recherche Medicale Française

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabre, M., Buser, P. Effects of lesioning the anterior suprasylvian cortex on visuo-motor guidance performance in the cat. Exp Brain Res 41, 81–88 (1981). https://doi.org/10.1007/BF00236597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236597

Key words

Navigation