Skip to main content
Log in

On the steady-state transverse vibrations of a cracked spherical shell

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

Using an integral formulation, the problem of a spherical shell containing a through crack of length 2c and subjected to periodic transverse vibrations of frequency ω is solved for the in-plane and Kirchhoff bending stresses. The usual inverse square root singular behavior characteristic to crack problems is recovered. Furthermore, it is found that the transverse vibrations reduce the stresses in the vicinity of the crack tip, except when the forcing frequency ω reaches the natural frequency of the uncracked shell in which case they become infinite.

Résumé

On analyse le problème de l'enveloppe sphérique ayant une fissure de longeur 2c de part en part de son épaisseur, et sujette à des vibrations transversales de pulsation ω; on résoud ré problème à l'aide de fonctions intégrales, pour les contraintes coplanaires et les contraintes de flexion de Kirchhoff.

On retrouve le comportement singulier habituel d'ordre 1/2, caractéristique des problèmes de fissuration. En outre, on trouve que des vibrations transversales ont tendance à réduire les contraintes au voisinage de l'extrémitée des fissures, sous réserve que leur fréquence ω atteigne la fréquence naturelle de l'enveloppe non fissurée; dans ces conditions les contraintes deviennent en effet infinies.

Zusammenfassung

Das Problem einer sphärischen Hülle, mit einem sich über die gesamte Dicke der Hülle hinziehenden Riß der Länge 2c, welche Querschwingungen mit einer Pulsierung unterworfen ist, wurde für die Fälle von koplanaren and von Kirchhoff-Biegebeanspruchungen mit Hilfe einer Integralformulierung gelöst. Hierbei ergab sich wiederum das fur Riß-probleme charakteristische Gesetz der umgekehrten Quadratwurzel.

Außerdem zeigte sich, das Querschwingungen die Spannungen in der Umgebung der Rißspitze vermindern, ausgenommen der Fall, wo die Frequenz ω der aufgezwungenen Schwingung mit der Eigenfrequenz der unbeschädigten Hülle übereinstimmt, wo sie dann ins Unendliche ansteigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

half crack length

D :

Eh 3/[12(1 − v 2)] = flexural rigidity

E :

Young's modulus of elasticity

F (x, y, t), \(\tilde F\)(x,y):

stress functions

\(\tilde F\) (c)(x,y):

complementary stress function

G :

shear modulus

h :

thickness

K n :

modified Bessel function of the third kind of order n

L i :

kernels as defined in text

m 0 :

constant as defined in text

M (c) x , M (c) y , M (c) xy :

complementary bending forces

M (p) x , M (p) y , M (p) xy :

particular bending forces

n 0 :

constant as defined in text

N (c) x , N (c) y , N (c) xy :

complementary membrane forces

N (p) x , N (p) y , N (p) xy :

Particular membrane forces

N n :

Newman function of order n

q(x, y, t), q(x, y):

internal pressure

r :

\(\{ (X - 1)^2 + Y^2 \} ^{\tfrac{1}{2}} \)

R :

radius of curvature of the shell

R:

\(\{ (X^2 + Y^2 \} ^{\tfrac{1}{2}} \)

t :

time variables

U(s−λ), U(λ−s):

the unit step function

V y :

equivalent shear

W(x, y, t), \(\tilde W\)(x, y, t):

displacement functions

\(\tilde W\) (c)(x,y):

complementary displacement function

\(x = \frac{X}{c}, y = \frac{Y}{c}, z = \frac{Z}{c}\) :

dimensionless rectangular coordinates

X, Y, Z :

rectangular cartesian coordinates

References

  1. E. S. Folias, Cracked Spherical Shell, Journal of Mathematics and Physics 44, No. 2 (1965) 164–176.

    Google Scholar 

  2. E. S. Folias, A Circumferential Crack in a Pressurized Cylindrical Shell, International Journal ofFracture Mechanics, 3 No. 1, (1967) 1–11.

    Google Scholar 

  3. E. S. Folias, An Axial Crack in a Pressurized Cylindrical Shell, International Journal of Fracture Mechanics, 1, No. 2 (1965) 104–113.

    Google Scholar 

  4. E. S. Folias, A Finite Line Crack in a Pressurized Spherical Shell, International Journal of Fracture Mechanics, 1, No. 1 (1965) 20–46.

    Google Scholar 

  5. E. S. Folias, On the Effect of Initial Curvature on Cracked Flat Sheets, International Journal of Fracture Mechanics, 5, No. 4 (1969) 327–346.

    Google Scholar 

  6. E. S. Folias, On the Theory of Fracture of Curved Sheets, submitted for publication to the Engineering Fracture Mechanics Journal.

  7. L. G. Copley and J. Lyell Sanders, Jr., A Longitudinal Crack in a cylindrical Shell under Internal Pressure, International Journal of Fracture Mechanics, 5, No. 2 (1969) 117–131.

    Google Scholar 

  8. M. E. Duncan and J. L. Sanders, Jr. A Cirumferential Crack in a Cylindrical Shell under Tension, private comminication.

  9. E. S. Folias, On the Steady-State Transverse Vivrations of a Cracked Plate, Engineering Fracture Mechanics Journal, 1, No. 2 (1968) 363–368.

    Google Scholar 

  10. G. C. Sih and J. F. Loeber, Flexural Waves Scattering at a Through Crack in an Elastic Plate, Engineering Fracture Mechanics Journal, 1, No. 2 (1968) 369–378.

    Google Scholar 

  11. G. A. Van Fo Fy and V. N. Burvol, Vibrations of Shallow Spherical Shells, Theory of Shells and Plates, S. M. Durgar yan, ed. NASA Technical Translation No. TT F-341 (Ace. No. TT 66-51021).

  12. I. S. Gradshteyn and I. W. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York, 1965.

    Google Scholar 

  13. M. L. Williams, The Bending Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, 28 (1961) 78–82.

    Google Scholar 

  14. M. L. Williams, On the Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, 25 (1957) 109–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, S.H., Folias, E.S. On the steady-state transverse vibrations of a cracked spherical shell. Int J Fract 7, 23–37 (1971). https://doi.org/10.1007/BF00236481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236481

Keywords

Navigation