Skip to main content
Log in

Patterns of the somesthetic messages transferred through the corpus callosum

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    In the rostral part of the corpus callosum (somesthetic callosal region, SCR) fibres were identified, through which the callosally-projecting cells of the somatosensory areas transmit to the other hemisphere signals originated in the body surface.

  2. 2.

    With seriate macroelectrode penetrations it was found that, to some extent, the body surface is represented somatotopically in the rostrocaudal extent of the SCR. The strongest mass potentials to trigeminal, fore- and hindlimb stimulation were recorded from the rostral, middle and caudal portions of the SCR. The whisker region and the forelimb (both paws and proximal segments) appeared to have the widest callosal representation.

  3. 3.

    Ablation experiments showed that callosal somesthetic fibres originate in both SI and SII areas and that only impulses set up in the contralateral hemibody are relayed in these areas. Direct stimulation of the latter evoked within the SCR mass potentials whose rostrocaudal distribution parallels that of the peripherally evoked responses.

  4. 4.

    Exploring the SCR with microelectrodes, 43 spontaneously active fibres were isolated, all reactive to electrical and physiological stimulation of the related peripheral receptive fields. These were located in trigeminal (31 fibres), segmental (10 fibres) or both in trigeminal and segmental regions (2 fibres). The extent of the receptive fields and the reactivity characteristics of almost all the fibres sampled were lemniscal in type, and similar to those of the somatotopic neurones of cortical somatosensory areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, P., Brooks, C. McC., Eccles, J.C., Sears, T.A.: The ventrobasal nucleus of the thalamus: potentials fields, synaptic transmission and excitability of both pre-synaptic and postsynaptic components. J. Physiol. (Lond.) 174, 348–369 (1964)

    Google Scholar 

  • Asanuma, H., Okamoto, K.: Unitary study on evoked activity of callosal neurons and its effect on pyramidal tract cell activity on cats. Jap. J. Physiol. 9, 473–483 (1959)

    Google Scholar 

  • Baker, M.A.: Spontaneous and evoked activity of neurones in the somatosensory thalamus of the waking cat. J. Physiol. (Lond.) 217, 359–379 (1971)

    Google Scholar 

  • Bava, A., Fadiga, E., Manzoni, T.: Interactive potentialities between thalamic relay-nuclei through subcortical commissural pathways. Arch. Sci. biol. 50, 101–133 (1966)

    Google Scholar 

  • Berlucchi, G.: Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res. 37, 371–392 (1972)

    Google Scholar 

  • Berlucchi, G., Gazzaniga, S.M., Rizzolatti, G.: Microelectrode analysis of transfer of visual information by the corpus callosum. Arch. ital. Biol. 105, 583–596 (1967)

    Google Scholar 

  • Boyd, E.H., Pandya, D.N., Bignal, K.E.: Homotopic and nonhomotopic interhemispheric cortical projections in the squirrel monkey. Exp. Neurol. 32, 256–274 (1971)

    Google Scholar 

  • Bremer, F.: Etude électrophysiologique d'un transfert interhémisphérique callosal. Arch. ital. Biol. 104, 1–29 (1966)

    Google Scholar 

  • Bremer, F., Terzuolo, C.: Transfert interhémisphérique d'informations sensorielles par le corps calleux. J. Physiol. (Paris) 47, 105–107 (1955)

    Google Scholar 

  • Brooks, V.B., Asanuma, H.: Recurrent cortical effects following stimulation of medullary pyramid. Arch. ital. Biol. 103, 247–278 (1965)

    Google Scholar 

  • Carreras, M., Andersson, S.A.: Functional properties of neurones of the anterior ectosylvian gyrus of the cat. J. Neurophysiol. 26, 100–126 (1963)

    Google Scholar 

  • Choudhury, B.P., Whitteridge, D., Wilson, M.E.: The function of the callosal connections of the visual cortex. Quart. J. exp. Physiol. 50, 214–219 (1965)

    Google Scholar 

  • Darian-Smith, I., Isbister, J., Mok, H., Yokota, T.: Somatic sensory cortical projection areas excited by tactile stimulation of the cat: a triple representation. J. Physiol. (Lond.) 182, 671–689 (1966)

    Google Scholar 

  • Ebner, F.F., Myers, R.E.: Distribution of corpus callosum and anterior commissure in cat and raccoon. J. comp. Neurol. 124, 353–366 (1965)

    Google Scholar 

  • Fadiga, E., Innocenti, G.M., Manzoni, T., Spidalieri, G.: Peripheral and transcallosal reactivity of neurones sampled from the face subdivision of the SI cortical area. Arch. ital. Biol. 110, 444–475 (1972)

    Google Scholar 

  • Fadiga, E., Manzoni, T.: Relationships between the somatosensory thalamic relay-nuclei of the two sides. Arch. ital. Biol. 107, 604–632 (1969)

    Google Scholar 

  • Feeney, D.M., Orem, J.M.: Influence of antidromic callosal volleys on single units in visual cortex. Exp. Neurol. 33, 310–321 (1971)

    Google Scholar 

  • Haight, J.R.: The general organization of somatotopic projections to SII cerebral neocortex in the cat. Brain Res. 44, 483–502 (1972)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Cortical and callosal connection concerned with the vertical meridian of visual field in the cat. J. Neurophysiol. 30, 1561–1573 (1967)

    Google Scholar 

  • Innocenti, G.M., Manzoni, T.: Response patterns of somatosensory cortical neurones to periph-eral stimuli. An intracellular study. Arch. ital. Biol. 110, 322–347 (1972)

    Google Scholar 

  • Innocenti, G.M., Manzoni, T., Spidalieri, G.: Peripheral and transcallosal reactivity of neurones within SI and SII cortical areas. Segmental divisions. Arch. ital. Biol. 110, 415–443 (1972)

    Google Scholar 

  • Innocenti, G.M., Manzoni, T., Spidalieri, G.: Peripheral reactivity of cortical somatosensory neurones during reversible blockade of callosal transmission. Brain Res. 49, 491–492 (1973a)

    Google Scholar 

  • Innocenti, G.M., Manzoni, T., Spidalieri, G.: Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones. Arch. ital. Biol. 111, 187–221 (1973b)

    Google Scholar 

  • Jones, E.G., Powell, T.P.S.: The commissural connections of the somatic sensory cortex in the cat. J. Anat. (Lond.) 103, 433–455 (1968a)

    Google Scholar 

  • Jones, E.G., Powell, T.P.S.: The ipsilateral connections of the somatic sensory areas in the cat. Brain Res. 9, 71–94 (1968b)

    Google Scholar 

  • Jones, E.G., Powell, T.P.S.: Connections of the somatic sensory cortex of the Rhesus monkey. II. Contralateral cortical connections. Brain Res. 92, 717–730 (1969)

    Google Scholar 

  • Kawamura, K., Otani, K.: Corticocortical fiber connections in the cerebrum: the frontal region. J. comp. Neurol. 139, 423–448 (1970)

    Google Scholar 

  • Levitt, J., Levitt, M.: Sensory hind-limb representation in Sm I cortex of the cat. Exp. Neurol. 22, 259–275 (1968)

    Google Scholar 

  • Luttemberg, J., Marsala, J.: Localization of commissural fibers in the corpus callosum of the cat's brain. Czech. J. Morph. 11, 166–176 (1963)

    Google Scholar 

  • Mountcastle, V.B.: Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957)

    Google Scholar 

  • Mountcastle, V.B.: Some functional properties of the somatic afferent system. In: Sensory communication, pp. 403–436. Ed. by W.A. Rosenblith. New York-London: Wiley and M.I.T. Press 1961

    Google Scholar 

  • Mountcastle, V.B.: Davies, P.W., Berman, A.L.: Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J. Neurophysiol. 20, 374–407 (1957)

    Google Scholar 

  • Naito, H., Miyakawa, F., Ito, N.: Diameter of callosal fibers interconnecting cat sensorymotor cortex. Brain Res. 27, 369–372 (1971)

    Google Scholar 

  • Oscarsson, O., Rosén, I.: Short-latency projections to the cat's cerebral cortex from skin and muscle afferents in the contralateral forelimb. J. Physiol. (Lond.) 182, 164–184 (1966)

    Google Scholar 

  • Oscarsson, O., Rosén, I., Sulg, I.: Organization of neurones in the cat cerebral cortex that are influenced from Group I muscle afferents. J. Physiol. (Lond.) 183, 189–210 (1966)

    Google Scholar 

  • Pandya, D.N., Karol, E.A., Heilbronn, D.: The topographical distribution of interhemispheric projection in the corpus callosum of the rhesus monkey. Brain Res. 32, 31–43 (1971)

    Google Scholar 

  • Pandya, D.N., Vignolo, L.A.: Interhemispheric projections of the parietal lobe in the Rhesus monkey. Brain Res. 15, 49–65 (1969)

    Google Scholar 

  • Poggio, G.F., Mountcastle, V.B.: The functional properties of ventrobasal thalamic neurones studied in unanesthetized monkey. J. Neurophysiol. 26, 775–806 (1963)

    Google Scholar 

  • Renshaw, B.: Activity in the simplest spinal reflex pathways. J. Neurophysiol. 3, 373–387 (1940)

    Google Scholar 

  • Robinson, D.L.: Electrophysiological analysis of interhemispheric relations in the second somatosensory cortex of the cat. Exp. Brain Res. (in press, 1973)

  • Rosén, I.: Projection of forelimb Group I muscle afferents to the cat cerebral cortex. Int. Rev. Neurobiol. 15, 1–25 (1972)

    Google Scholar 

  • Rosén, I., Asanuma, H.: Natural stimulation of Group I activated cells in the cerebral cortex of the awake cat. Exp. Brain Res. 16, 247–254 (1973)

    Google Scholar 

  • Schmidberger, G.: Über die Bedeutung der Schnurrhaare bei Katzen. Z. vergl. Physiol. 17, 387–407 (1932)

    Google Scholar 

  • Silfvenius, H.: Properties of cortical group I neurones located in the lower bank of the anterior suprasylvian sulcus of the cat. Acta physiol. scand. 84, 555–576 (1972)

    Google Scholar 

  • Snider, R.S., Niemer, W.T.: A stereotaxic atlas of the cat brain. Chicago: Univ. of Chicago Press 1961

    Google Scholar 

  • Stefanis, C.N., Jasper, H.H.: Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J. Neurophysiol. 27, 828–854 (1964)

    Google Scholar 

  • Sweet, G.E., Bourassa, C.M.: Short latency activation of pyramidal tract cells by group I afferent volleys in the cat. J. Physiol. (Lond.) 189, 101–117 (1967)

    Google Scholar 

  • Teitelbaum, H., Sharpless, S.K., Byck, R.: Role of somatosensory cortex in interhemispheric transfer of tactile habits. J. comp. physiol. Psychol. 66, 623–632 (1968)

    Google Scholar 

  • Thompson, W.D., Stoney, S.D., Asanuma, H.: Characteristics of projections from primary sensory cortex to motorsensory cortex in cats. Brain Res. 22, 15–27 (1970)

    Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T.: Antidromic identification of association, commissural and corticifugal efferent cells in the cat visual cortex. Brain Res. 14, 513–517 (1969)

    Google Scholar 

  • Woolsey, C.N.: Patterns of localization in sensory and motor areas of the cerebral cortex. In: Milbank Symposium. The biology of mental health and disease, pp. 193–206. New York: Hoeber 1952

    Google Scholar 

  • Woolsey, C.N.: Organization of somatic-sensory and motor areas of the cerebral cortex. In: Biological and biochemical bases of behavior, pp. 63–81. Ed. by H.F. Harlow, C.N. Woolsey. Madison: Univ. of Wisconsin Press 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by funds granted by Consiglio Nazionale delle Ricerche, Rome. Preliminary notes have been published in Arch. Fisiol. 68, 331–332 (1971) and Brain Res. 40, 507–512 (1972).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, G.M., Manzoni, T. & Spidalieri, G. Patterns of the somesthetic messages transferred through the corpus callosum. Exp Brain Res 19, 447–466 (1974). https://doi.org/10.1007/BF00236110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236110

Key words

Navigation