Skip to main content
Log in

Postural readjustments induced by linear motion of visual scenes

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Visually induced linear motion sensation (linear vection) was obtained by projection of a visual scene moving linearly in a sagittal plane at the periphery of the visual field of healthy subjects standing erect on a force platform. This linear vection induces postural readjustments characterized by an inclination of the subject, in the same direction as the movement of the visual scene, followed by an after-effect. The amplitude of the postural changes was: a) logarithmically proportional to the image velocity and the density (or the spatial frequency) of the image pattern, at highest image velocities there was a saturation of the postural effect due to limits in image motion perception and not to biomechanical constraints; b) dependent appreciably on the size of the moving scene and its relative location (in the visual field).

The frequency analysis of postural readjustments showed a) an increase of the amplitude of postural sway, especially at the low frequencies (from 0.02–0.2 Hz); b) sharp peaks in the power spectrum located between 0.15 and 0.5 Hz.

From the dynamic relationships between the velocity of the moving visual scene and the amplitude of sway, it was concluded that the postural readjustment is proportional to a low pass filtering of the logarithm of the velocity. The contribution of Tibialis Anterior and Soleus was to oppose the body inclination with a resistive force.

These results are analyzed in regard to the current theories concerning visual, vestibular and preceptive interaction in postural mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amblard, B., Cremieux, J.: Role of the visual motion information in the maintenance of postural equilibrium in man. Agressologie 17, C, 25–36 (1976)

    Google Scholar 

  • Basmajian, V.J.: Muscles Alive. Baltimore: The Williams and Wilkins Co 1967

    Google Scholar 

  • Berthoz, A., Pavard, B., Young, L.R.: Rôle de la vision périphérique et interactions visuo-vestibulaires dans la perception exocentrique du mouvement linéaire chez l'homme. C. R. Acad. Sci. (Paris) 278, Série D 1605–1608 (1974)

    Google Scholar 

  • Berthoz, A., Pavard, B., Young, L.R.: Perception of linear horizontal self-motion induced by peripheral vision (linear vection). Basic characteristics and visual-vestibular interactions. Exp. Brain Res. 23, 471–489 (1975)

    Google Scholar 

  • Bischof, N.: Optic-vestibular orientation to the vertical. In: Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations (ed. H.H. Kornhuber), pp. 155–190. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Brandt, T., Dichgans, J., Koenig, E.: Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16. 476–491 (1973)

    Google Scholar 

  • Brandt, T., Wist, E., Dichgans, J.: Foreground and background in dynamic spatial orientation. Perception and Psychophysics 17, 5, 497–503 (1975)

    Google Scholar 

  • Dallos, P.J., Jones, R.W.: Learning behavior of the eye fixation control system. IEEE Trans. Autom. Control AC-8, 218–227 (1963)

    Google Scholar 

  • Davis, W.J., Ayers, J.L.: Locomotion: Control by Positive-feedback optokinetic responses. Science 177, 183–185 (1972)

    Google Scholar 

  • De Wit, G.: Optic versus vestibular and proprioceptive impulses measured by posturometry. Agressologie 13B, 75–79 (1972)

    Google Scholar 

  • Dichgans, J., Held, R., Young, L.R., Brandt, T.: Moving visual scenes influence the apparent direction of gravity. Science 178, 1217–1219 (1972)

    Google Scholar 

  • Dichgans, J., Korner, F., Voigt, K.: Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychol. Forsch. 32, 277–295 (1969)

    Google Scholar 

  • Dichgans, J., Mauritz, K.H., Allum, J.H.J., Brandt, T.: Postural sway in normals and atactic patients: Analysis of the stabilizing and destabilizing effects of vision. Proc. 3rd Int. Cong. of Posturography, 1975, Agressologie 17, C, 15–24 (1976)

    Google Scholar 

  • Dichgans, J., Wist, E., Diener, H.C., Brandt, T.: The Aubert-Fleisch Phenomenon: A temporal frequency effect on perceived velocity in afferent motion perception. Exp. Brain Res. 23, 529–534 (1975)

    Google Scholar 

  • Diener, H.C., Wist, E.R., Dichgans, J., Brandt, T.: The spatial frequency effect on perceived velocity. Vision Res. 16, 169–176 (1976)

    Google Scholar 

  • Edwards, A.S.: Body sway and vision. J. exp. Psychol. 36, 526–535 (1946)

    Google Scholar 

  • Eklund, G., Lofstedt, L.: Biomechanical analysis of balance. Med. and Biol. Engrg. 23, 333–337 (1970)

    Google Scholar 

  • Gibson, J.: The visual perception of objective motion and subjective movement. Psychol. Rev. 61, 304–314 (1954)

    Google Scholar 

  • Gurfinkel, V.S.: Physical foundations of the stabilography. Agressologie 14, C, 9–14 (1973)

    Google Scholar 

  • Gurfinkel, V.S., Elner, A.M.: On two types of static disturbances in patients with local lesions of the brain. Agressologie 14, D, 65–72 (1973)

    Google Scholar 

  • Gurfinkel, V.S., Lipshitz, M.I., Popov, K.E.: Is stretch reflex base mechanism in system of orthograde postural regulation in man? Biofizika 19, 744–748 (1974)

    Google Scholar 

  • Held, R., Dichgans, J., Bauer, J.: Characteristics of moving visual scenes influencing spatial orientation. Vision Res. 15, 357–365 (1975)

    Google Scholar 

  • Holst, E. von: Die Arbeitsweise des Statolithenapparates bei Fischen. Z. vergl. Physiol. 32, 60–120 (1950)

    Google Scholar 

  • Houtz, S.J.: Influence of gravitational forces on function of the lower extremity muscles. J. appl. Physiol. 19, 999–1004 (1964)

    Google Scholar 

  • Joseph, J., Nightingale, A.: Electromyography of muscles of posture: leg muscles in males. J. Physiol. (Lond.) 117, 484–491 (1952)

    Google Scholar 

  • Kennedy, R.S., Yessenow, M.D., Wendt, G.R.: Magnitude estimation of visual velocity. J. Psychol. 82, 133–144 (1972)

    Google Scholar 

  • Lee, D.N., Lishman, J. D.: Visual proprioceptive control of stance. J. Human Movement studies (in press) 1975

  • Lee, D.N., Aronson, E.: Visual proprioceptive control of standing in human infants. Percept. and Psychophysics 15, 529–532 (1974)

    Google Scholar 

  • Lestienne, F.: Programme moteur et mécanismes de l'arrêt d'un mouvement monarticulaire. Thèse d'Etat, Lille, 1 vol., 200 p. 1974

  • Lestienne, F., Berthoz, A., Mascot, J.C., Koitcheva, V.: Postural effects of visually induced linear motion sensation; Proc. 3rd Int. Cong. of Posturography, 1975. Agressologie 17, C, 37–46 (1976a)

    Google Scholar 

  • Lestienne, F., Soechting, J., Berthoz, A.: Postural reorganizations induced by linear movement of a visual scene. Abstract, 3rd International Symp. on Motor Control. Albena: May 1976. (1976b)

  • Lishman, J.R., Lee, D.N.: The autonomy of visual kinaesthesis. Perception 2, 287–294 (1973)

    Google Scholar 

  • Mach, E.: Grundlinien der Lehre von den Bewegungsempfindungen. 129 pp. Leipzig: Engleman 1875

    Google Scholar 

  • Michael, J.A., Melville Jones, G.: Dependence of visual tracking capability upon stimulus predictability. Vision Res. 6, 707–716 (1966)

    Google Scholar 

  • Nashner, L. M., Boylls, C. C.: Coordination of long-latency (FSR) reflex responses among muscles of the leg during stance posture control in humans. Neuroscience Abstracts, 5th Annual Meeting. Society for Neuroscience, 163 (1975)

  • Nashner, L.M., Berthoz, A.: Visual contribution to rapid motor responses during postural control. Abstract to International Congress of Physiological Sciences. Paris 1977

  • Pavard, B.: Perception du mouvement linéaire chez l'homme. Thèse 3ème cycle, Paris, 1 vol., 70 p. 1975

  • Roberts, T.D.M.: Neurophysiology of Postural Mechanisms. 354 pp. London: Butterworth 1967

    Google Scholar 

  • Scott, D.E., Dzendolet, E.: Quantification of sway in standing humans. Agressologie 13B, 35–38 (1972)

    Google Scholar 

  • Stark, L., Vossius, G., Young, L.: Predictive control of eye tracking movements. IEEE Trans. Human Factors Electron. HFE-3, 52–57 (1962)

    Google Scholar 

  • Travis, R.C.: An experimental analysis of dynamic and static equilibrium. J. exp. Psychol. 35, 216–234 (1945)

    Google Scholar 

  • Witkin, H.A.: Studies in space orientation. I. Perception of the upright with displaced visual fields. J. exp. Psychol. 38, 325–337 (1948)

    Google Scholar 

  • Witkin, H.A.: Perception of the upright when the direction of the force acting on the body is changed. J. exp. Psychol. 40, 93–106 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lestienne, F., Soechting, J. & Berthoz, A. Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28, 363–384 (1977). https://doi.org/10.1007/BF00235717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235717

Key words

Navigation