Skip to main content
Log in

Regulation of adenylate cyclase by adenosine

  • Review Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Adenosine may well be as important in the regulation of adenylate cyclase as hormones. Sattin and Rall first demonstrated in 1970 that adenosine was a potent stimulator of adenylate cyclase in the brain. However, adenosine is an equally potent inhibitor of adenylate cyclase in other cells such as adipocytes. The concentration of adenosine required for this regulation of adenylate cyclase is in the nanomolar range (10 to 100 nm). Both the inhibitory and stimulatory effects of low concentrations of adenosine on adenylate cyclase are antagonized by methylxanthines. This antagonism of adenosine action may account for all or part of the effects of methyl xanthines on cyclic AMP levels in many tissues. Adenosine appears to be a particularly important endogenous regulator of adenylate cyclase in brain, smooth muscle and fat cells. Under conditions in which intracellular AMP rises, adenosine formation and release is accelerated. In addition to its direct effects on adenylate cyclase, adenosine (at higher concentrations approaching millimolar) exerts multiple effects on cellular metabolism as a result of its intracellular metabolism and especially conversion to nucleotides.

The effects of nanomolar concentrations of adenosine on adenylate cyclase are mediated through an adenosine site possessing strict structural specificity for the ribose moiety of the molecule (the “R” adenosine site) which is presumably located on the external surface of the plasma membrane. In brain, lung, platelets, bone, lymphocytes, skin, adrenals, Leydig tumors, and coronary arteries adenosine stimulates adenylate cyclase via this site. However, in rat adipocytes, brain astroblasts and ventricular myocardium adenosine inhibits adenylate cyclase through the “R” or adenosine site. Although the “R” site requires an intact ribose moiety, adenosine analogs modified in the purine ring such as N6-phenylisopropyladenosine appear to be potent agonists for this site. All effects of adenosine mediated via the “R” site are competitively antagonized by methyl xanthines.

The effects of micromolar concentrations of adenosine appear to be mediated via a site with strict structural specificity with respect to the purine moiety of the molecule (the “P” or adenine adenosine site). This “P” site is postulated to be located on the intracellular face of the plasma membrane and mediates the effects of adenosine due to conversion of adenosine to 5′-AMP or perhaps other nucleotides. The effects of high concentrations of adenosine are always inhibitory to adenylate cyclase activity, are readily demonstrated in broken cell preparations, and are unaffected by methylxanthines. An intact purine ring is required for these adenosine effects but modifications of the ribose moiety of the molecule generally increases the potency of the analog. A prime example is 2′,5′-dideoxyadenosine, which is the most potent known “R”-site specific adenosine analog.

We propose a unitary model which explains both the stimulatory and inhibitory effects of low concentrations of adenosine on adenylate cyclase. In brief, adenylate cyclase is postulated to exist in three interconvertible activity states: (i) an inactive state (E0); (ii) a GTP-liganded state with high activity (EGTP); and (iii) a GDP-liganded state (EGDP) which is inactive in cells where adenosine stimulates adenylate cyclase, but active in cells where adenosine inhibits adenylate cyclase. We postulate that the enzyme cycles through these states in the following manner: the E0 state binds GTP and forms the EGTP state; hydrolysis of bound GTP converts the EGTP to the EGDP state; and release of bound GDP converts EGDP to the E0 state. The E0 state is the only form of the enzyme which can be stimulated by either hormones or GTP and its formation from the EGDP state is rate-limiting in this cycle. The conversion of EGDP to E0 regulates the ability of hormones and GTP to activate adenylate cyclase and is postulated to be adenosine sensitive.

In cells where both EGDP and E0 states are inactive, adenosine stimulates adenylate cyclase activity. In cells where E0 is inactive, but EGDP is active, adenosine inhibits adenylate cyclase activity. In addition we suggest that in cells where adenosine inhibits adenylate cyclase activity (cells postulated to have an EGDP state which is active) high concentrations of GTP favor accumulation of the enzyme in EGDP and thus are inhibitory to activity. Prostaglandins may also regulate adenylate cyclase in a manner similar to that described above for adenosine.

We conclude that adenosine is an important regulator of adenylate cyclase whose role has only been appreciated recently. Further studies are warranted on both its binding to cells and mechanisms by which it regulates adenylate cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sattin, A. and Rall, T. W., 1970. Mol. Pharmacol. 6, 13–23.

    Google Scholar 

  2. Sutherland, E. W. and Rall, T. W., 1958. J. Biol. Chem. 232, 1077–1091.

    Google Scholar 

  3. Kakiuchi, S., Rall, T. W. and McIlwain, H., 1969. J. Neurochem. 16, 485–491.

    Google Scholar 

  4. Fain, J. N., Pointer, R. H. and Ward, W. F., 1972. J. Biol. Chem. 247, 6866–6872.

    Google Scholar 

  5. Westermann, E., Stock, K. and Bieck, P., 1969. Medizin und Ernährung 10, 143–147.

    Google Scholar 

  6. Mah, H. D. and Daly, J. W., 1976. Pharmacol. Res. Commun. 8, 65–79.

    Google Scholar 

  7. Londos, C. and Wolff, J., 1977. Proc. Nat. Acad. Sci. U.S.A. 74, 5482–5486.

    Google Scholar 

  8. Fain, J. N., Shepherd, R. E., Malbon, C. C. and Moreno, F. J., 1978. in Disturbances in Lipid and Lipoprotein Metabolism (Dietschy, J. N., ed.) pp. 213–228 American Physiological Society, Washington, D. C.

  9. Haslam, R. J., Davison, M. M. L., Davies, T., Lynham, J. A. and McClenaghan, M. D., 1978. Advances in Cyclic Nucleotide Res. 9 (George, W. J. and Ignarro, L. J., eds.), pp. 533–552, Raven Press, New York, New York.

  10. Sahyoun, N., Schmitges, C. J., Siegel, M, I. and Cuatrecasas, P., 1976. Life Sciences 19, 1961–1980.

    Google Scholar 

  11. Shimizu, H. and Daly, J., 1970. Biochim. Biophys. Acta 222, 465–473.

    Google Scholar 

  12. Palmer, G. C., 1971. Biochim. Biophys. Acta 252, 561–566.

    Google Scholar 

  13. Mills, D. C. B. and Smith, J. B., 1971. Biochem. J. 121, 185–196.

    Google Scholar 

  14. Haslam, R. J. and Rosson, G. M., 1975. Mol. Pharmacol. 11, 528–544.

    Google Scholar 

  15. Blume, A. J., Dalton, C. and Sheppard, H., 1973. Proc. Nat. Acad. Sci. U.S.A. 70, 3099–3102.

    Google Scholar 

  16. Clark, R. B., Gross, R., Su, J. F. and Perkins, J. P., 1974. J. Biol. Chem. 249, 5296–5303.

    Google Scholar 

  17. Peck, W. A., Carpenter, J. and Messinger, K., 1974. Endocrinol. 94, 148–154.

    Google Scholar 

  18. Wolberg, G., Zimmerman, T. P., Hiemstra, K., Winston, M. and Chu, L. C., 1975. Science 187, 957–959.

    Google Scholar 

  19. Huang, M. and Drummond, G., 1976. Biochem. Pharmacol. 25, 2713–2719.

    Google Scholar 

  20. Iizuka, H., Adachi, K., Halprin, K. and Levine, V., 1976. Biochim. Biophys. Acta 444, 685–693.

    Google Scholar 

  21. Wolff, J. and Cook, G. H., 1977. J. Biol. Chem. 252, 687–693.

    Google Scholar 

  22. Kukovetz, W. R., Pöch, G., Holzmann, S., Wurm. A. and Rinner, I., 1978. Advances in Cyclic Nucleotide Res. 9, 397–409.

    Google Scholar 

  23. Schwabe, U., Ebert, R. and Erbler, H. C., 1973. Arch. Pharmacol. 276, 133–148.

    Google Scholar 

  24. Dobson, J. G., Jr., 1978. Circulation Research, 43, 785–792.

    Google Scholar 

  25. Paton, D. M. and Baer, H. P. (editors), 1979. Physiological and regulatory functions of adenosine and adenine nucleotides, Plenum Press, New York.

    Google Scholar 

  26. Cha, S., Agarwal, R. P. and Parks. R. E., Jr., 1975. Biochem. Pharm. 24, 2187–2197.

    Google Scholar 

  27. Agarwal, R. P., Spector, T. and Parks, R. E., Jr., 1976. Biochem. Pharm. 26, 359–367.

    Google Scholar 

  28. Snyder, F. F. and Seegmiller, J. E., 1976. FEBS Letters 66, 102–106.

    Google Scholar 

  29. Hilz, H. and Kaukel, E., 1973. Mol. Cell. Biochem. 1, 229–239.

    Google Scholar 

  30. Kaukel, E., Fuhrmann, V. and Hilz, H., 1972. Biochem. Biophys. Res. Comm. 48, 1516–1524.

    Google Scholar 

  31. Fox, I. H. and Kelley, W. N., 1978. Ann. Rev. Biochem. 47, 655–686.

    Google Scholar 

  32. Dole, V. P., 1961. J. Biol. Chem. 236, 3125–3130.

    Google Scholar 

  33. Dole, V. P., 1962. J. Biol. Chem. 237, 2758–2762.

    Google Scholar 

  34. Vaughan, M., 1960. J. Biol. Chem. 235, 3049–3053.

    Google Scholar 

  35. Vaughan, M., 1961. J. Biol. Chem. 236, 2196–2199.

    Google Scholar 

  36. Solomon, S. S., Brush, J. S. and Kitabchi, A. E., 1970. Science 169, 387–388.

    Google Scholar 

  37. Burnstock, G., 1969. Pharmacol. Rev. 21, 247–324.

    Google Scholar 

  38. Burnstock, G., 1978. R. W. Straub and L. Bolis, eds., Raven Press, New York. A Multidisciplinary Approach, pp. 107–118.

    Google Scholar 

  39. Fain, J. N. and Shepherd, R. E., 1977. J. Biol. Chem. 252, 8066–8070.

    Google Scholar 

  40. Birnbaum, M. J. and Fain, J. N., 1977. J. Biol. Chem. 252, 528–535.

    Google Scholar 

  41. Lund, P., Cornell, N W. and Krebs, H. A., 1975. Biochem. J. 152, 593–599.

    Google Scholar 

  42. Ismail, N. A. and Hems, D. A., 1977. Biochem. Pharm. 27, 1341–1345.

    Google Scholar 

  43. Kappeler, H., 1966. Diabetologia 2, 52–61.

    Google Scholar 

  44. Raben, M. S. and Matsuzaki, F. 1966. J. Biol. Chem. 241, 4781–4786.

    Google Scholar 

  45. Davies, J. I., 1968. Nature 218, 349–352.

    Google Scholar 

  46. Pereira, J. N. and Holland G. F., 1966. Experientia 22, 658–659.

    Google Scholar 

  47. Moreno, F. J., Shepherd, R. E. and Fain, J. N., 1979. Arch. Pharmacol., in press.

  48. Carlson, L. A., 1963. Acta Medica Scan. 173, 719–723.

    Google Scholar 

  49. Gey, K. F. and Carlson, L. A., 1971. Metabolic effects of nicotinic acid and derivatives (Hans Huber, publisher) Berne.

    Google Scholar 

  50. Malbon, C. C., Hert, R. C. and Fain, J. N., 1978. J. Biol. Chem. 253, 3114–3122.

    Google Scholar 

  51. Fain, J. N. and Shepherd, R. E., 1979. Hormones and Energy Metabolism (D. M. Klachko and R. R. Anderson, eds.) Plenum Press, New York, pp. 43–78.

  52. Trost, T. and Stock, K., 1977. Arch. Pharmacol. 299, 33–40.

    Google Scholar 

  53. Londos, C., Cooper, D. M. F., Schlegel, W. and Rodbell, M., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 5362–5366.

    Google Scholar 

  54. Ebert, R. and Schwabe, U., 1973. Arch. Pharmacol. 278, 247–259.

    Google Scholar 

  55. Fain, J. N., 1973. Molecular Pharm. 9, 595–604.

    Google Scholar 

  56. Olsson, R. A., Davis, C. J., Khouri, E. M. and Patterson, R. E., 1976. Circulation Res. 39, 93–98.

    Google Scholar 

  57. Fain, J. N., 1979. Biochem. Biophys. Acta.

  58. Fredholm, B. B., 1976. Acta Physiol. Scand. 96, 422–430.

    Google Scholar 

  59. Fredholm, B. B., Belfrage, E. and Blaschke, E., 1977. Acta Physiol. Scand. 99, 313–322.

    Google Scholar 

  60. Namm, D. H. and Leader, J., 1974. Anal. Biochem. 58, 511–524.

    Google Scholar 

  61. Yoshioka, M. and Tamura, Z., 1976. J. Chromatography 123,220–224.

    Google Scholar 

  62. Kuttesch, J. F., Schmalstieg, F. C. and Nelson, J. A., 1978. J. Liquid Chromatography 1, 97–109.

    Google Scholar 

  63. Malbon, C. C., Moreno, F. J., Cabelli, R. J. and Fain, J. N., 1978. J. Biol. Chem. 253, 671–678.

    Google Scholar 

  64. Schwabe, U. and Ebert, R., 1974. Arch. Pharmacol. 282, 33–44.

    Google Scholar 

  65. Fain, J. N. and Wieser, P. B., 1975. J. Biol. Chem. 250, 1027–1034.

    Google Scholar 

  66. Turpin, B. P., Duckworth, W. C. and Solomon, S. S., 1977. J. Clin. Investig. 60, 442–448.

    Google Scholar 

  67. Hjemdahl, P. and Sollevi, A., 1978. Acta Physiol. Scand. 103, 270–274.

    Google Scholar 

  68. Fredholm, B. B. and Sollevi, A., 1977. Acta Physiol. Scand. 99, 254–256.

    Google Scholar 

  69. Schwabe, U. and Ebert, R., 1972. Arch. Pharmacol. 274, 287–298.

    Google Scholar 

  70. Schwabe, U., Berndt, S. and Ebert, R., 1972. Arch. Pharmacol. 273, 62–74.

    Google Scholar 

  71. Sheppard, H., Wiggan, G. and Tsien, W. H., 1972. Advances in Cyclic Nucleotide Research 1, 103–112.

    Google Scholar 

  72. Dalton, C., Quinn, J. B., Burghard, C. R. and Sheppard, H., 1970. J. Pharm. Exp. Ther. 173, 270–276.

    Google Scholar 

  73. Kitabgi, P., Rosselin, G. and Bataille, D., 1976. Horm. Metab. Res. 8, 266–270.

    Google Scholar 

  74. Malgieri, J. A., Shepherd, R. E. and Fain, J. N., 1975. J. Biol. Chem. 250, 6593–6598.

    Google Scholar 

  75. Boyd, T. A., Wieser, P. B. and Fain, J. N., 1975. Gen. Comp. Endocrinol. 26, 243–247.

    Google Scholar 

  76. Wieser, P. B. and Fain, J. N., 1975. Endocrinology 96, 1221–1225.

    Google Scholar 

  77. Schwabe, U., Schönhöfer, P. S. and Ebert, R., 1974. Eur. J. Biochem. 46, 537–545.

    Google Scholar 

  78. Fain, J. N., 1977. In Cyclic 3′5′-Nucleotides: Mechanisms of Action (Cramer, H. and Schultz, J., eds.) pp. 207–228, Wiley, London.

  79. Fain, J. N., 1974. in Biochemistry of Hormones (Rickenberg, H. V., ed.) Biochemistry Series I, Vol. VIII, pp. 1–23, University Park Press, Baltimore.

    Google Scholar 

  80. Faulhaber, J. D., Forster, K. and Ditschuneit, H. H., 1970. Horm. Metab. Res. 2, 307–308.

    Google Scholar 

  81. Drury, A. N. and Szent-Györgyi, A., 1929. J. Physiol. 68, 213–237.

    Google Scholar 

  82. Berne, R. M., 1963. Am. J. Physiol. 204, 317–322.

    Google Scholar 

  83. Haddy, F. J., 1977. in Tissue Hypoxia and Ischemia (Reivich, M., Coburn, R., Lahiri, S. and Chance, B., eds.) Plenum Publishing Co. New York. 175–182.

  84. McKenzie, S. G., Frew, R. and Bar, H. P., 1977. Eur. J. Pharmacol. 41, 193–203.

    Google Scholar 

  85. McKenzie, S. G., Frew, R. and Bar, H. P., 1977. Eur. J. Pharmacol. 41, 183–192.

    Google Scholar 

  86. Huang, M. and Drummond, G. I., 1976. Biochem. Pharmacol. 25, 2713–2719.

    Google Scholar 

  87. Herlihy, J. T., Bockman, E. L., Berne, R. M. and Rubio, R., 1976. Am. J. Physiol. 230, 1239–1243.

    Google Scholar 

  88. Kukovetz, W. R., Pöch, G., Holzmann, S., Wurn, A. and Rinner, I., 1978. in Cyclic nucleotides and therapeutic perspectives, Iuphar Satellite Symposium 7th International Pharmacology Congress Paris 1978 (G. Cehovic, Pergamon Press, ed.), in press.

  89. Daly, J. W., 1979. in Physiological and regulatory functions of adenosine and adenine nucleotides (Paton, D. M. and Baer, H. P., eds.) Plenum Press, New York, in press.

  90. Hedqvist, P, Fredholm, B. B. and Ölundh, S., 1978. Circulation Research 43, 592–598.

    Google Scholar 

  91. Fredholm, B. B. and Hedqvist, P., 1979. in Presynaptic Receptors (Langer, S. Z., ed), Pergamon Press, in press.

  92. Paton, D. M., 1979. in Catecholamines: Basic and clinical frontiers (Usdin, E., ed) Pergamon Press, Oxford, in press.

  93. Haslam, R. J. and Lynham, J. A., 1972. Life Sciences 11, 1143–1154.

    Google Scholar 

  94. Kukovetz, W. R., Wurm, A., Rinner, L, Holzman, S. and Poch, G., 1977. in Excitation-Contraction Coupling in Smooth Muscle (Casteels, R., et al., eds.) pp. 399–406, Elsevier/North Holland Biomedical Press.

  95. Prémont, J., Perez, M., Blanc, G., Tassin, J.-P., Thierry, A.-M., Herve, D. and Bockaert, J., I979. Molecular Pharm., in press.

  96. Prémont, J., Perez, M. and Bockaert, J., 1977. FEBS Letters 75, 209–212.

    Google Scholar 

  97. Prémont, J., Perez, M. and Bockaert, J., 1977. Molecular Pharm. 13, 662–670.

    Google Scholar 

  98. Haslam, R. J., Davidson, M. M. L. and Desjardins, J. V., 1978. Biochem. J. 176, 83–95.

    Google Scholar 

  99. Clark, R. B. and Seney, M. N., 1976. J. Biol. Chem. 251, 4239–4246.

    Google Scholar 

  100. Peck, W. A., Carpenter, J. G. and Schuster, R. J., 1976. Endocrinol. 99, 901–909.

    Google Scholar 

  101. Penit, J., Cantau, B., Huot, J. and Jard, S., 1977. Proc. Natl. Acad. Sci. U.S.A. 74, 1575–1579.

    Google Scholar 

  102. Penit, J., Huot, J. and Jard, S., 1976. J. Neurochem. 26, 265–273.

    Google Scholar 

  103. Blume, A. J. and Foster, C. J., 1975. J. Biol. Chem. 250, 5003–5008.

    Google Scholar 

  104. Birnbaumer, L., Nakahara, T. and Yang, P.-O., 1974. J. Biol. Chem. 249, 7857–7866.

    Google Scholar 

  105. Sevilla, N., Tolkovsky, A. M. and Levitzki, A., 1977. FEBS Letters 81, 339–341.

    Google Scholar 

  106. Tolkovsky, A. M. and Levitzki, A., 1978. Biochemistry 17, 3811–3817.

    Google Scholar 

  107. Ismail, N. A., El Denshary, E. S. M. and Montague, W., 1977. Biochem. J. 164, 409–413.

    Google Scholar 

  108. Wolff, J., Londos, C. and Cook, G. H., 1978. Archives of Biochemistry 191, 161–168.

    Google Scholar 

  109. Weinryb, I. and Michel, I. M., 1974. Biochim. Biophys. Acta 334, 218–225.

    Google Scholar 

  110. Moriwaki, K. and Foa, P. P., 1970. Experientia 26, 22.

    Google Scholar 

  111. Londos, C. and Preston, M. S., 1977. J. Biol. Chem. 252, 5951–5956.

    Google Scholar 

  112. Johnson, R. A. and Welden, J., 1977. Arch. Biochem. Biophys. 183, 216–227.

    Google Scholar 

  113. McKenzie, S. G. and Bar, H.-P., 1973. Can. J. Physiol. Pharmacol. 51, 190–196.

    Google Scholar 

  114. Blume, A. J. and Foster, C. J., 1976. J. Biol. Chem. 251, 3399–3404.

    Google Scholar 

  115. Blume, A. J. and Foster, C. J., 1976. J. Neurochem. 26, 305–311.

    Google Scholar 

  116. Levinson, S. L. and Blume, A. J., 1977. J. Biol. Chem. 252, 3766–3774.

    Google Scholar 

  117. Rodbell, M., Birnbaumer, L., Pohl, S. L. and Krans, H. M. J., 1971. J. Biol. Chem. 246, 1877–1882.

    Google Scholar 

  118. Birnbaumer, L., Bockaert, J., Hunzicker-Dunn, M. and Nakahara, T., 1978. in Modern Pharmcology-Toxicology Series, Vol. 11, “Receptors in Pharmacology,” Marcel Dekker, Inc., New York, NY, pp. 396–407.

    Google Scholar 

  119. Tolkovsky, A. M. and Levitzki, A., 1978. Biochemistry 17, 3795–3810.

    Google Scholar 

  120. Miles, D. L., Miles, D. W. and Eyring, H., 1977. Proc. Natl. Acad. Sci. U.S.A. 74, 2194–2198.

    Google Scholar 

  121. Rosenblit, P. D. and Levy, D., 1977. Biochem. Biophys. Res. Commun. 77, 95–103.

    Google Scholar 

  122. Levitzki, A., Sevilla, N., Atlas, D. and Steer, M. L., 1975. J. Mol. Biol. 97, 35–53.

    Google Scholar 

  123. Yuh, K.-C. and Tao, M., 1974. Biochemistry 13, 5220–5226.

    Google Scholar 

  124. Hsu, H. H. T., 1975. Proc. Soc. Exp. Biol. Med. 149, 698–701.

    Google Scholar 

  125. Ueland, P. M. and Døskeland, S. O., 1977. J. Biol. Chem. 252, 677–686.

    Google Scholar 

  126. Hershfield, M. S. and Kredich, N. M., 1978. Science 202, 757–759.

    Google Scholar 

  127. Harwood, J. P., Low, H. and Rodbell, 1973. J. Biol. Chem. 218, 6239–6245.

    Google Scholar 

  128. Yamamaru, H., Lad, P. M. and Rodbell, M., 1977. J. Biol. Chem. 252, 7964–7966.

    Google Scholar 

  129. Shimizu, H., Creveling, C. R. and Daly, J., 1970. Proc. Natl. Acad. Sci. U.S.A. 65, 1033–1040.

    Google Scholar 

  130. Schultz, J. and Daly, J. W., 1973. J. Biol. Chem. 248, 853–859.

    Google Scholar 

  131. Sturgill, T. W., Schrier, B. K. and Gilman, A. G., 1975. J. Cyclic Nucleotide Res. 1, 21–30.

    Google Scholar 

  132. Van Calker, D., Muller, M. and Hamprecht, B., 1978. Nature 276, 839–841.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by United States Public Health Service Research Grant AM-10149 from the National Institute of Arthritis, Metabolism and Digestive Diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fain, J.N., Malbon, C.C. Regulation of adenylate cyclase by adenosine. Mol Cell Biochem 25, 143–169 (1979). https://doi.org/10.1007/BF00235364

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235364

Keywords

Navigation