Skip to main content
Log in

Projections and termination of the corticospinal tract in rodents

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

An examination of the precise mode of termination of the corticospinal system in the spinal cord of rodents has been conducted by use of light and electron microscope methods. This study confirms the position of the normal corticospinal tract in rodents in the ventralmost portion of the dorsal column white matter. Three to four days following unilateral sensorimotor cortex ablation, Nauta-Gygax and Fink-Heimer silver methods reveal a dorsomedial projection of degenerating debris into the dorsal horn from the contralateral corticospinal tract. Although the silver methods do not show degeneration at survival times earlier than two days, the electron microscope shows degenerating axons and synaptic knobs as early as 24 hours following cortical lesion. The degenerating synaptic knobs are found only in the dorsal regions of the dorsal horn subjacent to the substantia gelatinosa. They usually make synaptic contact with several small to medium sized dendrites. These terminals do not appear to participate in axosomatic or axoaxonal synapses. No degeneration is seen in the ipsilateral corticospinal tract, the lateral white columns, or the ventral horn of the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, P., J.C. Eccles, Sears, T.A.: Presynaptic inhibitory action of cerebral cortex on spinal cord. Nature (Lond.) 194, 740–741 (1962).

    Google Scholar 

  • —: Cortically evoked depolarization of primary afferent fibers in the spinal cord. J. Neurophysiol. 27, 63–77 (1964).

    Google Scholar 

  • Barron, D.H.: The results of unilateral pyramidal section in the rat. J. comp. Neurol. 60, 45–55 (1934).

    Google Scholar 

  • Bodian, D.: Synaptic types on spinal motoneurons: an electron microscope study. Bull. John Hopk. Hosp. 119, 16–45 (1966).

    Google Scholar 

  • Brooks, C.M.: Studies on the cerebral cortex. II. Localized representation of hopping and placing reactions in the rat. Amer. J. Physiol. 105, 162–171 (1933).

    Google Scholar 

  • Carpenter, D., Lundberg, A., Norrsell, U.: Effects from the pyramidal tract on primary afferents and on spinal reflex actions to primary afferents. Experientia (Basel) 18, 337–338 (1962).

    Google Scholar 

  • —: Primary afferent depolarization evoked from the sensorimotor cortex. Acta physiol. scand. 59, 126–142 (1963).

    Google Scholar 

  • Castro, A.J.: Motor performance in the rat following lesions of the frontal cortex. Anat. Rec. 166, 289 (1970).

    Google Scholar 

  • Colonnier, M.: Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).

    Google Scholar 

  • Coombs, J.S., Curtis, D.R., Landgren, S.: Spinal cord potentials generated by impulses in muscle and cutaneous fibers. J. Neurophysiol. 19, 452–467 (1956).

    Google Scholar 

  • Douglas, A., Barr, M.L.: The course of the pyramidal tract in rodents. Rev. canad. Biol. 9, 118–122 (1950).

    Google Scholar 

  • Dunkerley, G.B., Duncan, D.: A light and electron microscopic study of the normal and degenerating corticospinal tract in the rat. J. comp. Neurol. 137, 155–184 (1969).

    Google Scholar 

  • Eccles, J.C.: The Physiology of Synapses. Berlin-Göttingen-Heidelberg-New York: Springer 1964.

    Google Scholar 

  • Fetz, E.E.: Pyramidal tract effects on interneurons in cat lumbar dorsal horn. J. Neurophysiol. 31, 69–80 (1968).

    Google Scholar 

  • Fink, R.P., Heimer, L.: Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369–374 (1967).

    Google Scholar 

  • Glees, P.: Terminal degeneration within the central nervous system as studied by a new silver method. J. Neuropath. 5, 54–59 (1946).

    Google Scholar 

  • Goodman, D.C., Jarrard, L.E., Nelson, J.F.: Corticospinal pathways and their sites of termination in the albino rat. Anat. Rec. 154, 462 (1966).

    Google Scholar 

  • Guillery, R.W., Ralston, H.J.: Nerve fibers and terminals: electron microscopy after Nauta staining. Science 143, 1331–1332 (1964).

    Google Scholar 

  • Haartsen, A.B.: Cortical projections to mesencephalon, pons, medulla oblongata and spinal cord: an experimental study in the goat and the rabbit. Thesis, Leiden 1962.

  • Hagbarth, D.E., Kerr, D.I.B.: Central influences on spinal afferent conduction. J. Neurophysiol. 17, 295–307 (1954).

    Google Scholar 

  • Heimer, L.: Silver impregnation of degenerating axons and their terminals on epon-araldite sections. Brain Res. 12, 246–249 (1969).

    Google Scholar 

  • —, Peters, A.: An electron microscope study of a silver stain for degenerating boutons. Brain Res. 8, 337–346 (1968).

    Google Scholar 

  • Holmes, W.: A new method for impregnation of nerve axons in mounted paraffin sections. J. Path. Bact. (Lond.) 54, 132–136 (1942).

    Google Scholar 

  • Jacobson, S.: An electron microscope study of Wallerian degeneration in the pyramidal tract. Neurology 17, (3) 298 (1967).

    Google Scholar 

  • Jane, J.A., Campbell, C.B.G., Yashon, D.: Pyramidal tract: a comparison of two prosimian primates. Science 147, 153–155 (1965).

    Google Scholar 

  • Kappers, A., Huber, G.C., Crosby, E.C.: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Hafner Publishing Co., N.Y. 1936.

    Google Scholar 

  • Karnorsky, M.T.: A formaldehyde-gluteraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137 (1965).

    Google Scholar 

  • King, J.L.: The corticospinal tract of the rat. Anat. Rec. 4, 245–252 (1910).

    Google Scholar 

  • Linowiecki, J.: The comparative anatomy of the pyramidal tract. J. comp. Neurol. 24, 509–530 (1914).

    Google Scholar 

  • Lund, J.S., Lund, R.D.: The termination of callosal fibers in the paravisual cortex of the rat. Brain Res. 17, 25–45 (1970).

    Google Scholar 

  • Lundberg, A., Voorhoeve, P.: Effects from the pyramidal tract on spinal reflex arcs. Acta physiol. scand. 56, 201–219 (1962).

    Google Scholar 

  • Martin, G.F., Dom, R.: The rubrospinal tract of the opossum (Didelphis virginiana). J. comp. Neurol. 138, 19–30 (1970).

    Google Scholar 

  • —, Fisher, A.M.: A further evaluation of the origin, the course and the termination of the opossum corticospinal tract. J. neurol. Sci. 7, 177–187 (1968).

    Google Scholar 

  • —, Megirian, D., Roebuck, A.: The corticospinal tract of the marsupial phalanger (Trichosurus vulpecula). J. comp. Neurol. 139, 245–258 (1970).

    Google Scholar 

  • Nauta, W.J.H., Gygax, P.A.: Silver impregnation of degenerating axons in the central nervous system: a modified technic. Stain Technol. 29, 91–93 (1954).

    Google Scholar 

  • Nyberg-Hansen, R., Brodal, A.: Sites of termination of corticospinal fibers in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 120, 369–391 (1963).

    Google Scholar 

  • Ralston, H.J., III: The fine structure of neurons in the dorsal horn of the cat spinal cord. J. comp. Neurol. 132, 275–302 (1968).

    Google Scholar 

  • Ranson, S.W.: The fasciculus cerebro-spinalis in the albino rat. Amer. J. Anat. 14, 411–424 (1913).

    Google Scholar 

  • Reveley, I.L.: The pyramidal tract in the guinea pig (Cavia aperea). Anat. Rec. 9, 297–305 (1915).

    Google Scholar 

  • Rexed, B.: The cytoarchitectonic organization of the spinal cord in the cat. J. comp. Neurol. 96, 415–496 (1954).

    Google Scholar 

  • Richardson, K.L., Jarett, L., Finke, E.H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Terminal axonal patterns in cat spinal cord. I. The lateral cortical spinal tract. Brain Res. 2, 333–350 (1966).

    Google Scholar 

  • Simpson, S.: Quoted from Nathan, P.W. and M.C. Smith 1955 Long descending tracts in man. Brain 78, 248–303 (1902).

    Google Scholar 

  • —: The pyramidal tract in the Canadian porcupine (Erethizion dorsatus, Linn.). Proc. Soc. exp. Biol. (N.Y.) 10, 4 (1912).

    Google Scholar 

  • —: The pyramidal tract in the red squirrel (Sciurus hudsonius loqua) and chipmunk (Tamias striatus lysteri). J. comp. Neurol. 24, 137–160 (1914).

    Google Scholar 

  • —: The pyramid tract in the striped gopher (Spermophilus tridicemlineatus). Quart. J. exp. Physiol. 8, 383 (1915).

    Google Scholar 

  • Sprague, J.M., Ha, H.: The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat and the dendritic organization of the motor nuclei. In: Progress in Brain Research, Vol. 11 (1964).

  • Torvik, A.: Afferent connections to sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J. comp. Neurol. 106, 51–141 (1956).

    Google Scholar 

  • Uchizono, K.: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965).

    Google Scholar 

  • Valverde, F.: The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord. Z. Zellforsch. 71, 297–363 (1966).

    Google Scholar 

  • Vaughn, J.E., Peters, A.: Aldehyde fixation of nerve fibers. J. Anat. (Lond.) 100, 687 (1966).

    Google Scholar 

  • Venable, J.H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).

    Google Scholar 

  • Walberg, F.: An electron microscope study of terminal degeneration in the inferior olive of the cat. J. comp. Neurol. 125, 205–222 (1965).

    Google Scholar 

  • Wall, P.D.: The laminar organization of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188, 403–424 (1967).

    Google Scholar 

  • Westrum, L.E.: A combination staining technique for electron microscopy. 1. Nervous tissue. J. Microscop. 4, 275–278 (1965).

    Google Scholar 

  • Windle, W.F., Rhines, R., Rankin, J.: A Nissl method using buffered solutions of thionin. Stain Technol. 18, 77–90 (1943).

    Google Scholar 

  • Young, J.Z.: The Life of Vertebrates. Oxford: Univ. Press, New York and Oxford 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, L.T. Projections and termination of the corticospinal tract in rodents. Exp Brain Res 13, 432–450 (1971). https://doi.org/10.1007/BF00234340

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234340

Key Words

Navigation