Skip to main content
Log in

Physiological responses of frog vestibular fibers to horizontal angular rotation

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    Single neuronal discharges in frog's vestibular nerve were recorded in unanesthetized preparations with glass microelectrodes. The nerve fibers supplying the horizontal semicircular canal are divided into two types according to the characteristics of their frequency responses to natural stimulation of the horizontal canal. The afferent fibers increase their firing rate only on ipsilateral rotation and cease to fire on contralateral acceleration. The efferent fibers usually increase their frequencies on rotation in either direction or show an increase in firing on contralateral rotation only. The thresholds of efferent fibers are generally higher as compared to afferent fibers. In addition, most of them show multisensory convergence.

  2. 2.

    Of the afferent fibers 65% showed frequency adaptation in response to prolonged acceleration steps whereas 35% did not show any sign of frequency decrease on prolonged stimulation.

  3. 3.

    Thirty out of 49 afferent units showed a non-linear relation between frequency increase and angular acceleration; in 19 units an approximately linear relationship was noted. In both types of responses the thresholds for frequency increase were in the range between 0.3–2.5°/sec2.

  4. 4.

    The time constants of the majority of fibers measured in the linear range were about 3 sec with a range between 1 and 10 sec. It is suggested that fibers having short time constants to acceleration and velocity step input represent acceleration-sensitive units whereas those having long time constants monitor angular velocity. Apparent ‘time constants’ were adopted for the non-linear range of non-linear units. These values decreased as the acceleration rate increased.

  5. 5.

    An approach to vestibular modeling, based on the present experimental results, is described in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burlet, H.M. de: Zur vergleichenden Anatomie der Labyrinthinnervation. J. comp. Neurol. 47, 155–169 (1929).

    Google Scholar 

  • Clark, B.: Thresholds for the perception of angular acceleration in man. Aerospace Med. 38, 443–450 (1967).

    Google Scholar 

  • Dichgans, J., Wist, E.R., Schmidt, C.L.: Modulation neuronaler Spontanaktivität im N. vestibularis durch optomotorische Impulse beim Kaninchen. Pflügers Arch. 319, R154 (1970).

    Google Scholar 

  • Ewald, J.B.: Physiologische Untersuchungen über das Endorgan des N. Oktavus, Wiesbaden: Bergmann 1892.

    Google Scholar 

  • Gazek, R.R., Nomura, Y., Balogh, K.: Acetylcholinesterase activity in the efferent fibers of the stato-acoustic nerve. Acta oto-laryng. (Stookh.) 59, 541 (1965).

    Google Scholar 

  • Gernandt, B.E.: Response of mammalian vestibular neurons to horizontal rotation and caloric stimulation. J. Neurophysiol. 12, 173–184 (1949).

    Google Scholar 

  • Gleisner, L., Henriksson, N.G.: Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta oto-laryng. (Stockh.) (Suppl. 192) 58, 90–103 (1963).

    Google Scholar 

  • Goldberg, J.M., Fernandez, C.: Responses of first-order vestibular afferents of the squirrel monkey to angular acceleration. Conf. on Systems Analysis Approach to Neurophysiological Problems. Brainerd, Minn. 1969.

    Google Scholar 

  • Groen, J.J., Lowenstein, O., Vendrik, A.J.H.: The mechanical analysis of the responses from the endorgans of the horizontal semicircular canal in the isolated elasmobranch labyrinth. J. Physiol. (Loud.) 117, 329–346 (1952).

    CAS  PubMed  Google Scholar 

  • Hallpike, C.S., Hood, J.D.: Fatigue and adaptation of the cupular mechanism of the human horizontal semicircular canal: An experimental investigation. Proc. roy. Soc. B. 141, 542–561 (1953).

    Google Scholar 

  • Hillman, D.E.: Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp. Brain Res. 9, 1–15 (1969).

    Google Scholar 

  • Jones, G.M., Milsum, J.H.: Spatial and dynamic aspects of visual fixation. IEEE Trans. Bio-med. Eng. 12, 54–62 (1965).

    Google Scholar 

  • Jung, R., Kornhuber, H.H.: Results of electro-nystagmography in man. The value of optokinetic, vestibular and spontaneous nystagmus for neurologic diagnosis and research. In: The Oculomotor System, pp. 428–477. Ed. by M.B. Bender. New York: Harper and Row 1964.

    Google Scholar 

  • Klinke, R.: Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch. 318, 325–332 (1970).

    Google Scholar 

  • Ledoux, A.: Activité électrique des nerfs des canaux semicirculaires du saccule et de l'utricle chez la grenouille. Acta oto-rhino-laryng. belg. 3, 335–349 (1949).

    Google Scholar 

  • —: Les canaux semicirculaires. Etude électrophysiologique. Contribution a l'uniformisation des épreuvés vestibulaires. Essai d'interprétation de la semiologie vestibulaire. Acta otorhino-laryng. belg. 12, 109–348 (1958).

    Google Scholar 

  • —: L'adaptation du systéme vestibulaire périphérique. Acta oto-laryng. (Stoekh.) 53, 307–316 (1961).

    Google Scholar 

  • Llinás, R., Precht, W.: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 9, 16–29 (1969).

    Google Scholar 

  • —, Clarke, M.: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971).

    Google Scholar 

  • Lowenstein, O.: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata). J. Physiol. (Lond.) 127, 104–117 (1955).

    Google Scholar 

  • —: Peripheral mechanisms of equilibrium. Brit. med. Bull. 12, 114–118 (1956).

    Google Scholar 

  • —, Sand, A.: The mechanism of the semicircular canal. A study of the responses of singlefibre preparations to angular accelerations and rotation at constant speed. Proc. roy. Soc. B. 129, 256–275 (1940a).

    Google Scholar 

  • —: The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. (Lond.) 99, 89–101 (1940b).

    Google Scholar 

  • Nakajima, S., Onodera, K.: Membrane properties of the stretch receptor neurons of crayfish with particular reference to the mechanisms of sensory adaptation. J. Physiol. (Lond.) 200, 161–185 (1969a).

    Google Scholar 

  • —: Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension. J. Physiol. (Lond.) 200, 187–204 (1969b).

    Google Scholar 

  • Precht, W., Grippo, J., Richter, A.: Effect of horizontal angular acceleration on neurons in the abducens nucleus. Brain Res. 5, 527–531 (1967).

    Google Scholar 

  • —, Richter, A., Grippo, J.: Responses of neurones in cat's abducens nuclei to horizontal angular acceleration. Pflügers Arch. 309, 285–309 (1969).

    Google Scholar 

  • Schmidt, C.L., Wist, E.R., Dichgans, J.: Alternierender Spontannystagmus, optokinetischer und vestibulärer Nystagmus and ihre Beziehungen zu rhythmischen Modulationen der Spontanaktivität im N. vestibularis beim Goldfisch. Pflügers Arch. 319, R155 (1970).

    Google Scholar 

  • Schmidt, R.F.: Frog labyrinthine efferent impulses. Acta oto-laryng. (Stockh.) 56, 51–64 (1963).

    Google Scholar 

  • Schoen, L.: Mikroableitungen einzelner zentraler Vestibularisneurone von Knochenfischen bei Statolithenreizen. Z. vergl. Physiol. 39, 399–417 (1957).

    Google Scholar 

  • Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol. 28, 991–1013 (1965).

    Google Scholar 

  • Steinhausen, W.: Über den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinthes bei der natürlichen rotatorischen und calorischen Reizung. Pflügers Arch. ges. Physiol. 228, 322–328 (1931).

    Google Scholar 

  • —: Über die Beobachtung der Cupula in den Bogengangsampullen des lebenden Hechts. Pflügers Arch. ges. Physiol. 232, 500–512 (1933).

    Google Scholar 

  • Szentágothai, J.: The elementary vestibulo-ocular reflex arc. J. Neurophysiol. 13, 395–407 (1950).

    Google Scholar 

  • Toennies, J.F.: Reflex discharges from the spinal cord over dorsal roots. J. Neurophysiol. 1, 378–390 (1938).

    Google Scholar 

  • Trincker, D.: Physiologie des Gleichgewichtsorgans. In: Hals-Nasen-Ohren-Heilkunde, Bd. III, T. 1. Ed. by J. Berendes, R. Link, F. Zöllner. Stuttgart: Georg Thieme 1965.

    Google Scholar 

  • Van Egmond, A.A.J., Groen, J.J., Jongkees, L.B.W.: The mechanics of the semicircular canal. J. Physiol. (Lond.) 110, 1–17 (1949).

    Google Scholar 

  • Young, L.R.: Biocybernetics, of the vestibular system. In: Biocybernetics of the Central Nervous System, pp. 79–117. Ed. by L.D. Proctor. Boston: Little, Brown & Co. 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Precht, W., Llinás, R. & Clarke, M. Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp Brain Res 13, 378–407 (1971). https://doi.org/10.1007/BF00234338

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234338

Key Words

Navigation