Skip to main content
Log in

Electrogenic proton secretion in the Hindgut of the desert locust, Schistocerca gregaria

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cellular mechanisms responsible for rectal acidification in the desert locust, Schistocerca gregaria, were investigated in isolated recta mounted as flat sheets in modified Ussing chambers. Previous studies conducted in the nominal absence of exogenous CO2 and HCO 3 suggested that the acidification was due to a proton-secretory rather than bicarbonate-reabsorptive mechanism (Thomson, R.B., Speight, J.D., Phillips, J.E. 1988. J. Insect Physiol. 34:829–837). This conclusion was confirmed in the present study by demonstrating that metabolic CO2 could not contribute sufficient HCO 3 to the lumen to account for the rates of rectal acidification observed under the nominally CO2/ HCO 3 -free conditions used in these investigations.

Rates of luminal acidification (J H +) were completely unaffected by changes in contraluminal pH, but could be progressively reduced (and eventually abolished) by imposition of either transepithelial pH gradients (lumen acid) or transepithelial electrical gradients (lumen positive). Under short-circuit current conditions, the bulk of J H + was not dependent on Na+, K+, Cl,Mg2+, or Ca2+ and was due to a primary electrogenic proton translocating mechanism located on the apical membrane. A small component (10–16%) of J H + measured under these conditions could be attributed to an apical amiloride-inhibitable Na+/H+ exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Awqati, Q., Mueller, A., Steinmetz, P.R. 1977. Transport of H against electrochemical gradients in turtle urinary bladder. Am. J. Physiol. 233:F502-F508

    Google Scholar 

  • Aronson, P.S. 1983. Mechanisms of active H secretion in the proximal tubule. Am. J. Physiol. 245:F647-F659

    Google Scholar 

  • Arruda, J.A.L., Sabatini, S., Westenfelder, C. 1981. Vanadate inhibits urinary acidification by the turtle bladder. Kidney Int. 20:772–779

    Google Scholar 

  • Balshin, M., Phillips, J.K. 1971. Active absorption of amino acids in the rectum of the desert locust (Schistocerca gregaria). Nature 233:53–55

    Google Scholar 

  • Beauwens, R., Crabbe, J., Rentmeesters, M. 1981. Effects of vanadate on the functional properties of the isolated toad bladder. J. Physiol. 310:293–305

    Google Scholar 

  • Black, K.T., Meredith, J., Thomson, B., Phillips, J., Dietz, T. 1987. Mechanisms and properties of sodium transport in locust rectum. Can. J. Zool. 65:3084–3092

    Google Scholar 

  • Brodsky, W.A., Schilb, T.P. 1974. The means of distinguishing between hydrogen secretion and bicarbonate reabsorption: Theory and applications to the reptilian bladder and mammalian kidney. In: Current Topics in Membranes and Transport. F. Bonner and A. Kleinzeller, editors. Vol. 4, pp. 162–224. Academic, New York

    Google Scholar 

  • Burckhardt, B.C., Fromter, E. 1987. Evidence for OH /H per meation across the peritubular cell membrane of rat renal proximal tubule in HCO3-free solutions. Pfluegers Arch. 409:132–137

    Google Scholar 

  • Chamberlin, M.E. 1981. Metabolic Studies on the Locust Rectum. Ph.D. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Chamberlin, M.E., Phillips, J.E. 1982. Metabolic support of chloride-dependent short-circuit current across locust rectum. J. Exp. Biol. 99:349–361

    Google Scholar 

  • Curci, S., Debellis, L., Fromter, E. 1987. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pfluegers Arch. 408:497–504

    Google Scholar 

  • Dilley, R.A., Giaquinta, R.T. 1975. H ion transport and energy transduction in chloroplasts. In: Current Topics in Membranes and Transport. F. Browner and A. Kleinzeller, editors. Vol. 7, pp. 49–107. Academic, New York

    Google Scholar 

  • DuBose, T.D. 1983. Application of the disequilibrium pH method to investigate the mechanism of urinary acidification. Am. J. Physiol. 2245:F535-F544

    Google Scholar 

  • Fischer, J.L., Husted, R.F., Steinmetz, P.R. 1983. Chloride dependence of the HCO3 exit step in urinary acidification by the turtle bladder. Am. J. Physiol. 245:F564-F568

    Google Scholar 

  • Forte, J.G., Machin, T.E., 1987. Ion transport by gastric mucosa. In: Membrane Physiology. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Schultz, editors, pp. 151–174. Plenum, New York

    Google Scholar 

  • Giebisch, G., Aronson, P.S. 1987. The proximal nephron. In:Membrane Transport Processes in Organized Systems. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Schultz, editors. pp. 285–316. Plenum, New York

    Google Scholar 

  • Gimenez-Gallego, G., Benavides, J., Garcia, M.I., Valdivieso, F. 1980. Occurrence of a reduced nicotinamidc adcninc dinucleotidc oxidase activity linked to a cytochrome system in renal brush border membranes. Biochemistry 19:4834–4839

    Google Scholar 

  • Gluck, S., Cannon, C., Al-Awqati, Q. 1982. Flxocytosis regulates urinary acidification in turtle bladder by rapid insertion of H pumps into the luminal membrane. Proc. Natl. Acad. Sci.USA 79:4327–4331

    Google Scholar 

  • Grassl, S.M., Aronson, P.S. 1986. Na+/HCO3 co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Biol. Chem. 261:8778–8783

    Google Scholar 

  • Hanrahan, J.W. 1982. Cellular Mechanisms and Regulation of KCI Transport across an Insect Epithelium. Ph.D. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Hanrahan, J.W., Meredith, J., Phillips, J.E., Brandys, D. 1984. Methods for the study of transport and control in insect hindgut. In: Measurement of Ion Transport and Metabolic Rate in Insects. T.J. Bradley and T.A. Miller, editors, pp. 19–68. Springer-Verlag, New York

    Google Scholar 

  • Hanrahan, J.W., Phillips, J.E. 1983. Mechanism and control of salt absorption in locust rectum. Am. J. Physiol. 224:R131-R142

    Google Scholar 

  • Hanrahan, J.W., Phillips, J.E. 1984a. KCI transport across an insect epithelium: I. Tracer fluxes and the effects of ion substitutions. J. Membrane Biol. 80:15–26.

    Google Scholar 

  • Hanrahan, J.W., Phillips, J.E. 1984b. KCI transport across an insect epithelium: II. Electrical potentials and electrophysiology. J. Membrane Biol. 80:27–47

    Google Scholar 

  • Harold, F.M., Altendorf, K. 1974. Cation transport in bacteria:K, Na, and H. In: Current Topics in Membranes and Transport. F. Browner and A. Kleinzeller, editors. Vol. 5, pp.1–49. Academic, New York

    Google Scholar 

  • Jentsch, T.J., Keller, S.K., Koch, M., Wiederholt, M. 1984. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corncal endothelial cells. J. Membrane Biol. 81:189–204

    Google Scholar 

  • Kinne-Saffran, F., Kinne, R. 1986. Proton pump activity and Mg-ATPasc activity in rat kidney cortex brush border membranes:Effect of ‘proton ATPase’ inhibitors. Pfluegers Arch. 407:S180-S185

    Google Scholar 

  • Kinsella, J.L., Aronson, P.S. 1980. Properties of the Na/H exchanger in renal microvillus membrane vesicles. Am. J.Physiol. 238:F461-F469

    Google Scholar 

  • Knauf, P.A. 1987. Anion transport in erythrocytes. In: Membrane Physiology. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Schultz, editors, pp. 191–220. Plenum, New York

    Google Scholar 

  • Kuwabara, M., Ishibashi, K., Krapf, R., Rector, F.C., Berry, C.A. 1989. Effect of lumen pH on cell pH and cell potential in rabbit proximal tubules. Am. J. Physiol. 256:F1075-F1083

    Google Scholar 

  • Lechleitner, R.A. 1988. Properties of ion and fluid transport and control in hindgut of the desert locust (Schistocerca gregaria). Ph.D. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Pedersen, P.L., Carafoli, E. 1987. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12:146–150

    Google Scholar 

  • Phillips, J.E. 1961. Studies on the rectal absorption of water and salts in the locust, Schistocerca gregaria, and the blowfly, Calliphora erythrocephala. Ph.D. Thesis. University of Cambridge, England

    Google Scholar 

  • Phillips, J.E. 1981. Comparative physiology of insect renal function. Am. J. Physiol. 241:R241-R257

    Google Scholar 

  • Phillips, J.E., Hanrahan, J.W., Chamberlin, M.E., Thomson, R.B. 1986. Mechanisms and control of reabsorption in insect hindgut. In: Advances in Insect Physiology, P.D. Evans and V.B. Wigglesworth, editors. Vol. 19, pp. 329–422. Academic, London

    Google Scholar 

  • Preisig, P.A., Alpern, R.J. 1989. Basolateral membrane H-OH-HCO3 transport in the proximal tubule. Am. J. Physiol. 256:F751-E765

    Google Scholar 

  • Ramsay, J.A., Brown, R.H.J., Croghan, P.C. 1955. Electrometric titration of chloride in small volumes. J. Exp. Biol. 32:822–829

    Google Scholar 

  • Rector, F.C., Carter, N.M., Seldin, D.W. 1965. The mechanisms of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. Clin. Invest. 44:278–290

    Google Scholar 

  • Rehm, W.S. 1972. Proton transport. In: Metabolic Pathways. L.E. Hokin, editor. Vol. 6, pp. 187–241. Academic, New York

    Google Scholar 

  • Reuss, L., Constantin, J.L. 1984. Cl/HCO3 exchange at the apical membrane of Necturus gallbladder. J. Gen. Physiol. 83:801–818

    Google Scholar 

  • Schilb, T.P. 1978. Bicarbonate ion transport: A mechanism for the acidification of urine in the turtle. Science 220:208–209

    Google Scholar 

  • Schilb, T.P., Durham, J.H., Brodsky, W.A. 1988. In vivo environmental temperature and the in vitro pattern of luminal acidification in turtle bladders. Evidence for HCO3 ion reabsorption. J. Gen. Physiol. 92:613–642

    Google Scholar 

  • Schwartz, G.J., Weinstein, A.M., Steele, R.E., Slephenson, J.L., Burg, M.B. 1981. Carbon dioxide permeability of rabbit proximal convoluted tubules. Am. J. Physiol. 240:F231:F244

    Google Scholar 

  • Schwartz, J.H., Finn, J.T., Vaughan, G., Steinmetz, P.R. 1974. Distribution of metabolic CO2 and the transported ion species in acidification by turtle bladder. Am. J. Physiol. 226:283–289

    Google Scholar 

  • Schwartz, J.H., Steinmetz, P.R. CO2 requirements for H+ secretion by the isolated turtle bladder. Am. J. Physiol. 220:2051–2057

  • Schweikl, H., Klein, U., Schindlbeck, M., Wieczorck, H. 1989. A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J. Biol. Chem. 264:11136–11142

    Google Scholar 

  • Seifter, J.L. Aronson, P.S. 1986. Properties and physiologic roles of the plasma membrane sodium-hydrogen exchanger. J. Clin.Invest. 78:859–864

    Google Scholar 

  • Siggaard-Andersen, O. 1976. The Acid-Base Status of the Blood. (4th ed.) pp. 1–83. Williams and Wilkins, Baltimore

    Google Scholar 

  • Speight, J. 1967. Acidification of rectal fluid in the locust, Schistocerca gregaria. M.Sc. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Stagg, A.P., Harrison, J.F., Phillips, J.E. 1991. Acid-base parameters in Malpighian tubule secretion and response to acidosis. J. Exp. Biol. (in press)

  • Steinmetz, P.R. 1969. Acid-base relations in epithelium of turtle bladder: Site of active step in acidification and role of metabolic CO2. J. Clin. Invest. 48:1258–1265

    Google Scholar 

  • Steinmetz, P.R. 1974. Cellular mechanisms of urinary acidification. Physiol. Rev. 54:890–956

    Google Scholar 

  • Steinmetz, P.R., Andersen, O.S. 1982. Electrogenic proton transport in epithelial membranes. J. Membrane Biol. 65:155–174

    Google Scholar 

  • Steinmetz, P.R., Husted, R.F., Mueller, A., Beauwens, R. 1981. Coupling between H transport and anaerobic glycolysis in turtle urinary bladder: Effects of inhibitors of H+ ATPase. J.Membrane Biol. 59:27–34

    Google Scholar 

  • Strange, K., Phillips, J.E. 1984. Mechanisms of CO2 transport in rectal salt gland of Aedes. I. Ionic requirements of CO2 secretion. Am. J. Physiol. 246:R727-R734

    Google Scholar 

  • Strange, K., Phillips, J.E. 1985. Cellular mechanisms of HCO3and Cl transport in insect salt gland. J. Membrane Biol. 83:25–37

    Google Scholar 

  • Thomson, R.B. 1990. Cellular mechanisms of acid/base transport in an insect excretory epithelium. Ph.D. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Thomson, R.B., Audsley, N., Phillips, J.E. 1991. Acid-base transport and control in locust hindgut: Artifacts caused by short-circuit current. J. Exp. Biol. 155:455–467

    Google Scholar 

  • Thompson, R.B., Phillips, J.K. 1985. Characterization of acid/base transport in an insect epithelium. Fed. Proc. 44:1361

    Google Scholar 

  • Thomson, R.B., Speight, J.D., Phillips, J.E. 1988a. Rectal acid secretion in the desert locust, Schistocerca gregaria. J. Insect Physiol. 34:829–837

    Google Scholar 

  • Thomson, R.B., Thomson, J.M., Phillips, J.E. 1988b. NH +4 transport in an acid secreting insect epithelium. Am. J. Physiol. 254:R348-R356

    Google Scholar 

  • Turrini, F., Sabolic, I., Zimolo, Z., Moewes, B., Burckhardt, G. 1989. Relation of ATPases in rat renal brush-border membranes to ATP-driven H+ secretion. J. Membrane Biol. 107:1–12

    Google Scholar 

  • Wikstrom, M. 1982. Proton translocation by cytochrome oxidase. Curr. Top. Membr. Transp. 16:303–321

    Google Scholar 

  • Williams, D., Phillips, J.E., Prince, W.T., Meredith, J. 1977. The source of short-circuit current across locust rectum. J. Exp.Biol. 77:107–122

    Google Scholar 

  • Zeidel, M.L., Silva, P., Seifter, J.L. 1986a. Intracellular pH regulation and proton transport by rabbit renal medullary collecting duct cells: Role of plasma membrane proton adenosine triphosphatase. J. Clin. Invest. 77:113–120

    Google Scholar 

  • Zeidel, M.L., Silva, P., Seifter, J.L. 1986b. Intracellular pH regulation in rabbit renal medullary collecting duct cells: Role of chloride-bicarbonate exchange. J. Clin. Invest. 77:1682–1688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by operating grants to J.E.P. and postgraduate scholarships to R.B.T. from Natural Sciences & Engineering Research Council, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, R.B., Phillips, J.E. Electrogenic proton secretion in the Hindgut of the desert locust, Schistocerca gregaria . J. Membarin Biol. 125, 133–154 (1992). https://doi.org/10.1007/BF00233353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233353

Key Words

Navigation