Skip to main content
Log in

Folylpoly-γ-glutamate synthesis by bacteria and mammalian cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The purification and properties of folylpolyglutamate synthetase fromCorynebacterium sp, and some properties of partially purified enzyme fromLactobacillus casei, Streptococcus faecalis, Neurospora crassa, pig liver, and Chinese hamster ovary cells, are described.

TheCorynebacterium enzyme catalyzes a MgATP-dependent addition of glutamate to a variety of reduced pteroate and pteroylmono-, di-, and triglutamate substrates, with the concomitant production of MgADP and phosphate. Although glutamate moieties are added in a sequential fashion, the kinetic mechanism, which is Ordered Ter Ter, precludes the sequential addition of glutamate moieties to enzyme-bound folate. It is suggested that catalysis precedes via the formation of a pteroyl-γ-glutamyl phosphate intermediate.

Thein vivo distribution of folylpolyglutamates in bacteria and mammalian cells, which differ from source to source, appear to be a reflection of the ability of folylpolyglutamates to act as substrates for folylpolyglutamate synthetases from different sources.

Only one enzyme appears to be involved in the conversion of pteroylmonoglutamates to polyglutamate forms in both bacteria and mammalian cells. Bacterial folylpolyglutamate synthetases use a variety of pteroylmonoglutamates as their preferred monoglutamate substrate, but use 5,10-methylenetetrahydropteroylpolyglutamates as their preferred, and sometimes only, polyglutamate substrate. Mono- and polyglutamyl forms of tetrahydrofolate are the preferred substrates of mammalian folylpolyglutamate synthetases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PteGlu:

pteroylmonoglutamic acid, folic acid

H4PteGlun :

5,6,7,8-tetrahydropteroylpoly-γ-glutamate

pABAglun :

p-aminobenzoylpoly-γ-glutamate

References

  1. Blakley, R. L., 1969. The Biochemistry of Folic Acid and Related Pteridines (Neuberger, A. & Tatum, E. L., eds.), pp. 219–358. North Holland, Amsterdam.

  2. Brody, T., Shane, B. & Stokstad, E. L. R., 1981. The Handbook of the Vitamins (Machlin, J. L., ed.), Marcel Dekker, New York, in press.

  3. Covey, J. M., 1980. Life Sci. 26: 665–678.

    PubMed  Google Scholar 

  4. Shane, B. & Stokstad, E. L. R., 1975. J. Biol. Chem. 250: 2243–2253.

    PubMed  Google Scholar 

  5. Shane, B. & Stokstad, E. L. R., 1976. J. Biol. Chem. 251: 3405–3410.

    PubMed  Google Scholar 

  6. Cheng, F. W., Shane, B. & Stokstad, E. L. R., 1975. Can. J. Biochem. 53: 1020–1027.

    Google Scholar 

  7. Coward, J. K., Paraswaran, N. K., Cashmore, A. R. & Bertino, J. R., 1974. Biochemistry 13: 3899–3903.

    PubMed  Google Scholar 

  8. Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, N. K., DeAngelis, L. M. & Bertino, J. R., 1975. Biochemistry 14: 1548–1552.

    PubMed  Google Scholar 

  9. Curthoys, N. P. & Rabinowitz, J. C., 1972. J. Biol. Chem. 247: 1965–1971.

    PubMed  Google Scholar 

  10. Burton, E. G. & Metzenberg, R. L., 1975. Arch. Biochem. Biophys. 168: 219–229.

    PubMed  Google Scholar 

  11. Colnick, B. J. & Cheng, V.-C., 1978. J. Biol. Chem. 253: 3563–3567.

    PubMed  Google Scholar 

  12. Baggott, J. E. & Krumdieck, C. L., 1979. Biochemistry 18: 1036–1041.

    PubMed  Google Scholar 

  13. Kisliuk, R. L., Gaumont, Y. & Baugh, C. M., 1974. J. Biol. Chem. 249: 4100–4103.

    PubMed  Google Scholar 

  14. Powers, S. G. & Snell, E. E., 1976. J. Biol. Chem. 251: 3786–3793.

    PubMed  Google Scholar 

  15. Salem, A. R., Pattison, J. R. & Foster, M. A., 1972. Biochem. J, 126: 993–1004.

    PubMed  Google Scholar 

  16. Shane, B. & Stokstad, E. L. R., 1977. J. Gen. Microbiol. 103: 261–270.

    PubMed  Google Scholar 

  17. Whitfield, C. D., Steers, E. J. & Weissbach, H., 1970. J. Biol. Chem. 245: 390–401.

    PubMed  Google Scholar 

  18. Paukert, J. L., Straus, L. D. & Rabinowitz, J. C., 1976. J. Biol. Chem. 251: 5104–5111.

    PubMed  Google Scholar 

  19. MacKenzie, R. E., 1979. Chemistry and Biology of Pteridines (Kisliuk, R. L. & Brown, G. M., eds.), pp. 443–446. Elsevier, New York.

  20. Rowe, P. B., McCairns, E., Madsen, G., Sauer, D. & Elliot, H., 1978. J. Biol. Chem. 253: 7711–7721.

    PubMed  Google Scholar 

  21. Smith, G. K., Mueller, W. T., Wasserman, G. F., Taylor, W. D. & Benkovic, S. J., 1980. Biochemistry 19: 4313–4321.

    PubMed  Google Scholar 

  22. Ferone, R. & Roland, S., 1980. Proc. Natl. Acad. Sci. USA 77: 5802–5806.

    PubMed  Google Scholar 

  23. MacKenzie, R. E., Aldridge, M. & Paquin, J., 1980. J. Biol. Chem. 255: 9474–9478.

    PubMed  Google Scholar 

  24. MacKenzie, R. E. & Baugh, C. M., 1980. Biochim. Biophys. Acta 611: 187–195.

    PubMed  Google Scholar 

  25. Matthews, R. G. & Baugh, C. M., 1980. Biochemistry 19: 2040–2045.

    PubMed  Google Scholar 

  26. Friedkin, M., Plante, L. T., Crawford, E. J. & Crumm, M., 1975. J. Biol. Chem. 250: 5614–5621.

    PubMed  Google Scholar 

  27. McBurney, M. W. & Whitmore, G. F., 1974. Cell 2: 173–182.

    PubMed  Google Scholar 

  28. Taylor, R. T. & Hanna, M. L., 1977. Arch. Biochem. Biophys. 181: 331–344.

    PubMed  Google Scholar 

  29. Taylor, R. T. & Hanna, M. L., 1979. Arch. Biochem. Biophys. 197: 36–43.

    PubMed  Google Scholar 

  30. Taylor, R. T. & Hanna, M. L., 1975. Arch. Biochem. Biophys. 171: 507–520.

    PubMed  Google Scholar 

  31. Baggott, J. E. & Krumdieck, C. L., 1979. Chemistry and Biology of Pteridines (Kisliuk, R. L. & Brown, G. M. ed.), pp. 347–351. Elsevier, New York.

  32. Baugh, C. M., Stevens, J. C. & Krumdieck, C. L., 1970. Biochim. Biophys. Acta 212: 116–125.

    PubMed  Google Scholar 

  33. Plante, L. T., Crawford, E. J. & Friedkin, M., 1967. J. Biol. Chem. 242: 1466–1476.

    PubMed  Google Scholar 

  34. Whiteley, J. M., Henderson, G. B., Russell, A., Singh, P. & Zeverly, E. M., 1977. Anal. Biochem. 79: 42–51.

    PubMed  Google Scholar 

  35. Blakley, R. L., 1969. The Biochemistry of Folic Acid and Related Pteridines (Neuberger, A. & Tatum, E. L., ed.) pp. 92–94. North Holland, Amsterdam.

  36. Shane, B. & Stokstad, E. L. R., 1977. J. Gen. Microbiol. 103: 249–259.

    PubMed  Google Scholar 

  37. Shane, B., Brody, T. & Stokstad, E. L. R., 1979. Chemistry and Biology of Pteridines (Kisliuk, R. L. & Brown, G. M. ed.) pp. 341–346, Elsevier, New York.

  38. Shane, B., 1980. J. Biol. Chem. 255: 5649–5654.

    PubMed  Google Scholar 

  39. Foo, S. K., Cichowicz, D. J. & Shane, B., 1980. Anal. Biochem. 107: 109–115.

    PubMed  Google Scholar 

  40. Brody, T., Shane, B. & Stokstad, E. L. R., 1979. Anal. Biochem. 92: 501–509.

    PubMed  Google Scholar 

  41. Shane, B., 1980. J. Biol. Chem. 255: 5655–5662.

    PubMed  Google Scholar 

  42. McGuire, J. J., Hsieh, P., Coward, J. K. & Bertino, J. R., 1980. J. Biol. Chem. 255: 5776–5788.

    PubMed  Google Scholar 

  43. Houlihan, C. M. & Scott, J. M., 1972. Biochem. Biophys. Res. Comm. 48: 1675–1681.

    PubMed  Google Scholar 

  44. Baugh, C. M., Braverman, E. & Nair, M. G., 1974. Biochemistry 13: 4952–4957.

    PubMed  Google Scholar 

  45. Tyerman, M. J., Watson, J. E., Shane, B., Schutz, D. E. & Stokstad, E. L. R., 1977. Biochim. Biophys. Acta 497: 234–240.

    PubMed  Google Scholar 

  46. Mariyuma, T., Shiota, T. & Krumdieck, C. L., 1978. Anal. Biochem. 84: 277–295.

    PubMed  Google Scholar 

  47. Baugh, C. M., Braverman, E. B., Nair, M. G., Horne, D. W., Briggs, W. T. & Wagner, C., 1979. Anal. Biochem. 92: 366–369.

    PubMed  Google Scholar 

  48. Lewis, G. P. & Rowe, P. B., 1979. Anal. Biochem. 93: 91–97.

    PubMed  Google Scholar 

  49. Hutchins, B. L., Stokstad, E. L. R., Bohonos, N., Sloane, N. H. & SubbaRow, Y., 1948. J. Am. Chem. Soc. 70: 1–3.

    Google Scholar 

  50. Shane, B., 1980. J. Biol. Chem. 255: 5663–5667.

    PubMed  Google Scholar 

  51. Lowenstein, J. M., 1958. Biochem. J. 70: 222–230.

    PubMed  Google Scholar 

  52. Fromm, H. J., 1975. Mol. Biol. Biochem. Biophys. 22: 41–160.

    Google Scholar 

  53. Sakami, W., Ritari, S. J., Black, C. W. & Rzepka, J., 1973. Fed. Proc. 32: 471.

    Google Scholar 

  54. Mansurekar, M. & Brown, G. M., 1975. Biochemistry 14: 2424–2430.

    PubMed  Google Scholar 

  55. Shane, B. & Stokstad, E. L. R., 1981. Advances in Nutrition Research (Draper, H. H., ed.) Plenum Press, New York, in press.

  56. Gawthorne, J. M. & Smith, R. M., 1973. Biochem. J. 136: 295–301.

    PubMed  Google Scholar 

  57. Spronk, A. M., 1973. Fed. Proc. 34: 471.

    Google Scholar 

  58. Coward, J. K., 1979. Drug Actions and Design: Mechanism-Based Enzyme Inhibitors (Kalman, ed.) pp. 13–21, Elsevier, New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichowicz, D.J., Foo, S.K. & Shane, B. Folylpoly-γ-glutamate synthesis by bacteria and mammalian cells. Mol Cell Biochem 39, 209–228 (1981). https://doi.org/10.1007/BF00232575

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232575

Keywords

Navigation