Skip to main content
Log in

Activation of skeletal muscle nicotinic acetylcholine receptors

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary and Conclusions

Work over the past ten years has greatly increased our understanding of both the structure and function of the muscle nicotinic acetylcholine receptor. There is a strongly supported general picture of how the receptor functions: agonist binds rapidly to sites of low affinity and channel opening occurs at a rate comparable to the agonist dissociation rate. Channel closing is slow, so the channel has a high probability of being open if both agonist-binding sites are occupied by ACh. Results of expression studies have shown that each subunit can influence AChR activation and have given a structural basis for the major physiological change known for muscle AChR, the developmental change in AChR activation. These general statements notwithstanding, there are still major areas of uncertainty which limit our understanding. We have emphasized these areas of uncertainty in this review, to indicate what needs to be done.

First, the quantitative estimates of rate constants are not as strongly supported as they should be. The major reasons are twofold—uncertainties about the interpretation of components in the kinetic data and difficulties of resolving brief events. As a result, any inferences about the functional consequences of structural alterations must remain tenuous.

Second, the functional behavior of individual AChRs is not as well understood as it should be. The kinetic behavior of an individual receptor clearly can be complex (section II). In addition, there is evidence that superimposed on this complexity there may be stable and kinetically distinguishable populations of receptors (section III). Until the basis for the kinetically defined populations is clarified, kinetic parameters for receptors of defined structure cannot be unambiguously obtained.

Finally, it is not surprising that the studies of AChR of altered structure have not given definitive results. Two reasons should be apparent from the preceding points: there is not a fully supported approach for kinetic analysis, and the “normal” population may not be clearly defined. An additional complication is also emerging, in that the available data support the idea that specific residues distributed over all subunits may influence AChR activation. This possibility renders the task of analysis that much more difficult.

The muscle nicotinic AChR has served as a prototype for the family of transmitter-gated membrane channels, which includes the muscle and neuronal nicotinic receptors, the GABAA, the glycine and possibly the non-NMDA excitatory amino acid receptor (Stroud et al., 1990). It is interesting to note that the functional properties of the GABAA receptor, probably the best-studied of the other members of the family are rather similar. In particular, opentime and burst durations show multiple components interpreted as reflecting openings of singly and doubly liganded receptors (Mathers & Wang, 1988; Macdonald et al., 1989), the distribution of gaps indicates a relatively complex gating scheme (Twyman et al., 1990; Weiss & Magleby, 1989), and multiple kinetic modes are likely to exist (Newland et al., 1991). The situation with regards to the effects of GABAA receptor subunit stoichiometry is more complex than for muscle AChR (e.g., Luddens & Wisden, 1991), perhaps similar to that found for neuronal nicotinic AChR (Papke et al., 1989; Luetje et al., 1990; Luetje & Patrick, 1991). Overall, it appears that the unresolved questions about the muscle nicotinic AChR are not indications that this is an exceptionally complicated transmitter-gated channel. Rather, it appears to be a relatively straightforward member of the family, and the lessons we learn from studying it are likely to be directly applicable to other receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.R. 1981. J. Membrane Biol. 58:161–174

    Google Scholar 

  • Anderson, C.R., Stevens, C.F. 1973. J. Physiol. 235:655–691

    Google Scholar 

  • Auerbach, A. 1992. Biophys. J. (in press)

  • Auerbach, A., Lingle, C.J. 1986. J. Physiol. 378:119–140

    Google Scholar 

  • Auerbach, A., Lingle, C.J. 1987. J. Physiol. 393:437–466

    Google Scholar 

  • Auerbach, A., Sachs, F. 1983. Biophys. J. 42:1–10

    Google Scholar 

  • Auerbach, A., Sachs, F. 1984. Biophys. J. 45:187–198

    Google Scholar 

  • Bean, B.P. 1989. Annu. Rev. Physiol. 51:367–384

    Google Scholar 

  • Blatz, A., Magleby, K. 1986. Biophys. J. 49:967–980

    Google Scholar 

  • Blount, P., Merlie, J.P. 1989. Neuron 3:349–357

    Google Scholar 

  • Buller, A.L., White, M.M. 1990b. Mol. Pharmacol. 37:423–428

    Google Scholar 

  • Chabala, L.D., Lester, H.A. 1986. J. Physiol. 379:83–108

    Google Scholar 

  • Charnet, P., Labarca, C., Leonard, R.J., Vogelaar, N.J., Czyzyk, L., Gouin, A., Davidson, N., Lester, H.A. 1990. Neuron 2:87–95

    Google Scholar 

  • Charnet, P., Labarca, C., Lester, H.A. 1991. Biophys. J. 59:527a

  • Clark, A.J. 1933. Mode of Action of Drugs on Cells. Arnold, London

    Google Scholar 

  • Claudio, T. 1990. In: Frontiers of Molecular Biology. D. Glover and D. Hames, editors, pp. 63–142. IRL, London

    Google Scholar 

  • Colquhoun, D., Hawkes, A.G. 1977. Proc. R. Soc. London B. 199:231–262

    Google Scholar 

  • Colquhoun, D., Hawkes, A.G. 1981. Proc. R. Soc. London B. 211:205–235

    Google Scholar 

  • Colquhoun, D., Ogden, D.C., 1988. J. Physiol. 395:131–159

    Google Scholar 

  • Colquhoun, D., Sakmann, B. 1981. Nature 294:464–466

    Google Scholar 

  • Colquhoun, D., Sakmann, B. 1985. J. Physiol. 369:501–557

    Google Scholar 

  • Covarrubias, M., Kopta, C., Steinbach, J.H. 1989. J. Gen. Physiol. 93:765–783

    Google Scholar 

  • Covarrubias, M., Steinbach, J.H. 1990. Pfluegers Arch. 416:385–392

    Google Scholar 

  • Crouzy, S.C., Sigworth, F.J. 1990. Biophys. J. 58:731–743

    Google Scholar 

  • Dani, J.A. 1989. Trends Neurosci. 12:125–128

    Google Scholar 

  • del Castillo, J., Katz, B. 1957a. Proc. R. Soc. London B. 146:362–368

    Google Scholar 

  • del Castillo, J., Katz, B. 1957b. Proc. R. Soc. London B. 146:369–381

    Google Scholar 

  • Dionne, V.E. 1989. J. Physiol. 409:313–331

    Google Scholar 

  • Dionne, V.E., Steinbach, J.H., Stevens, C.F. 1978. J. Physiol. 281:421–444

    Google Scholar 

  • Eigen, M., de Maeyer, L. 1963. In: Techniques of Organic Chemistry. A. Weissberger, editor, pp. 895–1054. Interscience, New York

    Google Scholar 

  • Fatt, P., Katz, B. 1951. J. Physiol. 115:320–370

    Google Scholar 

  • Fatt, P., Katz, B. 1952. J. Physiol. 117:109–128

    Google Scholar 

  • Forsayeth, J.R., Rantco, A.J., Rossi, A.B., Lansman, J.B., Hall, Z.W. 1990. J. Neurosci. 10:2771–2779

    Google Scholar 

  • Gibb, A.J., Kojima, H., Carr, J.A., Colquhoun, D. 1990. Proc. R. Soc. London B. 242:108–112

    Google Scholar 

  • Gu, Y., Franco, A.J., Gardner, P.D., Lansman, J.B., Forsayeth, J.R., Hall, Z.W. 1990. Neuron 5:147–157

    Google Scholar 

  • Hamill, O.P., Sakmann, B. 1981. Nature 294:462–464

    Google Scholar 

  • Hartman, D.S., Claudio, T. 1990. Nature 343:372–375

    Google Scholar 

  • Hess, P., Lansman, J.B., Tsien, R.W. 1984. Nature 311:538–544

    Google Scholar 

  • Horn, R. 1987. Biophys. J. 51:255–263

    Google Scholar 

  • Horn, R., Korn, S.J. 1989. Biophys. J. 55:379–381

    Google Scholar 

  • Huganir, R.L., Greengard, P. 1990. Neuron 5:555–567

    Google Scholar 

  • Igusa, Y., Kidokoro, Y. 1987. J. Physiol. 389:271–300

    Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., More, Y., Fukuda, K., Numa, S. 1988. Nature 335:645–648

    Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y., Numa, S. 1986. Nature 324:670–674

    Google Scholar 

  • Jackson, M.B. 1986. Biophys. J. 49:663–672

    Google Scholar 

  • Jackson, M.B. 1988. J. Physiol. 397:555–583

    Google Scholar 

  • Jackson, M.B., Imoto, K., Mishina, M., Konno, T., Numa, S., Sakmann, B. 1990. Pfluegers Arch. 417:129–135

    Google Scholar 

  • Jaramillo, F., Schuetze, S.M. 1988. J. Physiol. 396:267–296

    Google Scholar 

  • Karlin, A. 1967. J. Theor. Biol. 16:306–320

    Google Scholar 

  • Karlin, A., Holtzman, E., Yodh, N., Lobel, P., Wall, J., Hainfeld, J. 1983. J. Biol. Chem. 258:6678–6681

    Google Scholar 

  • Katz, B., Thesleff, S. 1957. J. Physiol. 138:63–80

    Google Scholar 

  • Kidokoro, Y., Rohrbaugh, J. 1990. J. Physiol. 425:227–224

    Google Scholar 

  • Korn, S.J., Horn, R. 1988. Biophys. J. 54:871–877

    Google Scholar 

  • Kullberg, R., Owens, J.L. 1986. J. Physiol. 374:413–427

    Google Scholar 

  • Kullberg, R., Owens, J.L., Camacho, P., Mandel, G., Brehm, P. 1990. Proc. Natl. Acad. Sci. USA 87:2067–2071

    Google Scholar 

  • Kurosaki, T., Fukuda, K., Konno, T., Mori, Y., Tanaka, K., Mishina, M., Numa, S. 1987. FEBS Lett. 214:253–258

    Google Scholar 

  • Land, B.R., Salpeter, E.E., Salpeter, M.M. 1981. Proc. Natl. Acad. Sci. USA 78:7200–7204

    Google Scholar 

  • Langley, J.N. 1906. Proc. R. Soc. London B. 78:170–195

    Google Scholar 

  • Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N., Lester, H.A. 1988a. Science 242:1578–1581

    Google Scholar 

  • Leonard, R.J., Nakajima, S., Nakajima, Y., Carlson, C.G. 1988b. J. Neurosci. 11:4038–4048

    Google Scholar 

  • Leonard, R.J., Nakajima, S., Nakajima, Y., Takahashi, T. 1984. Nature 226:55–57

    Google Scholar 

  • Li, L., Schuchard, M., Palma, A., Pradier, L., McNamee, M.G. 1990. Biochemistry 29:5428–5436

    Google Scholar 

  • Liebovitch, L.S. 1989. Biophys. J. 55:373–377

    Google Scholar 

  • Liu, Y., Camacho, P., Mandel, G., Brehm, P. 1990. Soc. Neurosci. Abstr. 16:1015

    Google Scholar 

  • Liu, Y., Dilger, J.P. 1991. Biophys. J. 60:424–432

    Google Scholar 

  • Lo, D.C., Pinkham, J.L., Stevens, C.F. 1990a. Neuron 5:857–866

    Google Scholar 

  • Lo, D.C., Pinkham, J.L., Stevens, C.F. 1990b. Neuron 6:31–40

    Google Scholar 

  • Luddens, H., Wisden, W. 1991. Trends Pharmacol. Sci. 12:49–51

    Google Scholar 

  • Luetje, C.W., Patrick, J. 1991. J. Neurosci. 11:837–845

    Google Scholar 

  • Luetje, C.W., Wada, K., Rogers, S., Abramson, S.N., Tsuji, K., Heinemann, S., Patrick, J. 1990. J. Neurochem. 55:632–640

    Google Scholar 

  • Macdonald, R.L., Rogers, C.J., Twyman, R.E. 1989. J. Physiol. 410:479–499

    Google Scholar 

  • Maconochie, D.J., Steinbach, J.H. 1992. Biophys. J. 61:A143

    Google Scholar 

  • Magleby, K.L., Stevens, C.F. 1972. J. Physiol. 223:173–197

    Google Scholar 

  • Mathers, D.A., Wang, Y. 1988. Synapse 2:627–632

    Google Scholar 

  • Mayne, K.M., Yoshii, K., Yu, L., Lester, H.A., Davidson, N. 1987. Mol. Brain Res. 2:191–197

    Google Scholar 

  • McManus, O.B., Magleby, K.L. 1988. J. Physiol. 402:79–120

    Google Scholar 

  • McManus, O.B., Spivak, C.E., Blatz, A.L., Weiss, D.S. Magleby, K.L. 1989. Biophys. J. 55:383–385

    Google Scholar 

  • McManus, O.B., Weiss, D.S., Spivak, E., Blatz, A.L., Magleby, K.L. 1988. Biophys. J. 54:859–870

    Google Scholar 

  • Merlie, J.P., Smith, M.M. 1986. J. Membrane Biol. 91:1–10

    Google Scholar 

  • Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., Sakmann, B. 1986. Nature 321:406–410

    Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasake, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., Numa, S. 1985. Nature 313:364–369

    Google Scholar 

  • Mulrine, N.K., Ogden, D.C. 1988. J. Physiol. 401:95

    Google Scholar 

  • Nelson, D.J., Sachs, F. 1979. Nature 282:861–863

    Google Scholar 

  • Neubig, R., Cohen, J.B. 1980. Biochem. 18:5464–5475

    Google Scholar 

  • Newland, C.F., Colquhoun, D., Cull-Candy, S.G. 1991. J. Physiol. 432:203–233

    Google Scholar 

  • Nowycky, M.C., Fox, A.P., Tsien, R.W. 1985. Proc. Natl. Acad. Sci. USA 82:2178–2182

    Google Scholar 

  • Ogden, D.C., Colquhoun, D. 1983. Pfluegers Arch. 399:246–284

    Google Scholar 

  • Ogden, D.C., Colquhoun, D. 1985. Proc. R. Soc. London B. 225:329–355

    Google Scholar 

  • O'Leary, M.E., White, M.M. 1991. Biophys. J. 59:34a

  • Papke, R.L., Boulter, J., Patrick, J., Heinemann, S. 1989. Neuron 3:589–596

    Google Scholar 

  • Papke, R.L., Millhauser, G., Lieberman, Z., Oswald, R.E. 1988. Biophys. J. 53:1–10

    Google Scholar 

  • Patlak, J.B., Gration, K.A., Usherwood, P.N.R. 1979. Nature 478:643–645

    Google Scholar 

  • Patlak, J.B., Ortiz, M., Horn, R. 1986. Biophys. J. 49:773–777

    Google Scholar 

  • Perutz, M. 1990. Mechanisms of Cooperativity and Allosteric Regulation in Proteins. Cambridge University Press, Cambridge

    Google Scholar 

  • Phillips, W.D., Kopta, C., Blount, P., Gardner, P.D., Steinbach, J.H., Merlie, J.P. 1991. Science 251:568–570

    Google Scholar 

  • Pradier, L.A., Yee, S., McNamee, M.G. 1989. Biochemistry 28:6562–6571

    Google Scholar 

  • Prinz, H., Maelicke, A. 1983. J. Biol. Chem. 258:10263–10271

    Google Scholar 

  • Reuhl, T., Pinkham, J., Moorman, J.R., Dani, J.A. 1989. Neurosci. Abstr. 15:827

    Google Scholar 

  • Rohrbaugh, J., Kidokoro, Y. 1990. J. Physiol. 425:245–269

    Google Scholar 

  • Roux, B., Sauve, R. 1985. Biophys. J. 48:149–158

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kuraski, M., Fukuda, K., Numa, S. 1985. Nature 318:538–543

    Google Scholar 

  • Sakmann, B., Patlak, J., Neher, E. 1980. Nature 286:71–73

    Google Scholar 

  • Sine, S.M. 1988. J. Biol. Chem. 263:18052–18062

    Google Scholar 

  • Sine, S.M., Claudio, T. 1991. J. Biol. Chem. 266:13679–13689

    Google Scholar 

  • Sine, S.M., Claudio, T., Sigworth, F.J. 1990. J. Gen. Physiol. 96:395–437

    Google Scholar 

  • Sine, S.M., Steinbach, J.H. 1984a. Biophys. J. 45:175–185

    Google Scholar 

  • Sine, S.M., Steinbach, J.H. 1984b. Biophys. J. 46:277–284

    Google Scholar 

  • Sine, S.M., Steinbach, J.H. 1986a. J. Physiol. 370:357–379

    Google Scholar 

  • Sine, S.M., Steinbach, J.H. 1986b. J. Physiol. 373:129–162

    Google Scholar 

  • Sine, S.M., Steinbach, J.H. 1987. J. Physiol. 385:325–359

    Google Scholar 

  • Sine, S.M., Taylor, P. 1981. J. Biol. Chem. 256:6692–6699

    Google Scholar 

  • Steinbach, J.H., Ifune, C. 1989. Trends Neurosci. 12:3–6

    Google Scholar 

  • Stevens, C.F. 1972. Biophys. J. 12:1028–1047

    Google Scholar 

  • Stroud, R.M., McCarthy, M.P., Shuster, M. 1990. Biochemistry 29:11009–11023

    Google Scholar 

  • Sumikawa, K., Miledi, R. 1989. Mol. Brain Res. 5:183–192

    Google Scholar 

  • Sutton, F., Davidson, N., Lester, H.A. 1988. Mol. Brain Res. 3:187–192

    Google Scholar 

  • Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M., Numa, S. 1987. FEBS Lett. 222:56–62

    Google Scholar 

  • Tomaselli, G.F., McLaughlin, J.T., Jurman, M., Hawrot, E., Yellen, G. 1991. Biophys. J. 60:721–729

    Google Scholar 

  • Twyman, R.E., Rogers, C.J., Macdonald, R.L. 1990. J. Physiol. 423:193–220

    Google Scholar 

  • Villarroel, A., Herlitze, S., Sakmann, B. 1991. Biophys. J. 59:34a

    Google Scholar 

  • Wagoner, P.K., Pallotta, B.S. 1988. Science 240:1655–1657

    Google Scholar 

  • Weiss, D.S., Magleby, K.L. 1989. J. Neurosci. 9:1314–1324

    Google Scholar 

  • White, M.M. 1987. Soc. Neurosci. Abstr. 13:98

    Google Scholar 

  • Yoshii, K., Yu, L., Mayne, K.M., Davidson, N., Lester, H.A. 1987. J. Gen. Physiol. 90:553–573

    Google Scholar 

  • Yu, L., Leonard, R.J., Davidson, N., Lester, H.A. 1991. Mol. Brain Res. 3:203–211

    Google Scholar 

  • Zagotta, W.N., Germeraad, S., Garber, S.S., Hoshi, T., Aldrich, W. 1989. Neuron 3:773–782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank many friends for discussion, including Tony Auerbach, Paul Brehm, Jim Dilger, Meyer Jackson, and Chuck Stevens who told us about data before publication. Research in the authors' laboratories is supported by grants from the NIH (CL and JHS) and the AHA (CL).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingle, C.J., Maconochie, D. & Steinbach, J.H. Activation of skeletal muscle nicotinic acetylcholine receptors. J. Membarin Biol. 126, 195–217 (1992). https://doi.org/10.1007/BF00232318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232318

Key Words

Navigation